
Distributed Trajectory Estimation with
Privacy and Communication Constraints:

a Two-Stage Distributed Gauss-Seidel Approach

Siddharth Choudhary1, Luca Carlone2, Carlos Nieto1, John Rogers3,
Henrik I. Christensen1, Frank Dellaert1

1 Institute for Robotics and Intelligent Machines, Georgia Tech
2 Laboratory for Information and Decision Systems, MIT

3 Army Research Lab

Motivation

Related work:
• distributed SLAM

[Dong et al., Paull et al., Bailey et al.]

• multi robot localization
[Roumeliotis et al., Tron and Vidal]

• distributed optimization
[Cunningham et al., Nerurkar et al., Franceschelli
and Gasparri, Aragues etl al.]

• State of the art: DDF-SAM requires
communication cost quadratic in
the number of rendezvous.

• Goal: distributed estimation of  
trajectories of robots in a team

• why distributed: avoid exchange  
of large amount of data
• small flying robots
• underwater vehicles

• Applications:
• mapping
• exploration
• …

Cooperative estimation of 3D robot trajectories from relative pose
measurements, with the following constraints:

1. Communication only occurs during rendezvous.

2. Data exchange must be minimal (due to limited bandwidth and privacy).

Problem Statement

Example application of Privacy Constraint:
Optimization of Multiple trajectories

collected through Google Project Tango
(courtesy: Simon Lynen)

Communication only occurs when two
robots are close enough.

• Each phase requires solving a linear system
• We use the Gauss-Seidel algorithm as distributed

linear solver

Contribution

Distributed Trajectory Estimation with Privacy and Communication Constraints:
A Two-Stage Distributed Gauss-Seidel Approach

Siddharth Choudhary, Luca Carlone, Carlos Nieto, John Rogers, Henrik I. Christensen, Frank Dellaert

Trajectory estimation as Pose Graph Optimization:

Related work: iterative optimization

Our approach: 2 stage [Carlone et al. (ICRA 2015)]

Estimate Optimum

SLAM - TORO - Sphere Optimization
courtesy: Cyril Stachniss

Initialization Techniques for 3D SLAM: a Survey on
Rotation Estimation and its Use in Pose Graph Optimization

Luca Carlone, Roberto Tron, Kostas Daniilidis, and Frank Dellaert
sphere-a torus cube cubicle rim

O
do

m
et

ry
In

iti
al

iz
at

io
n

O
pt

im
um

Fig. 1. State-of-the-art techniques for SLAM optimize robot trajectory via iterative methods (e.g. Gauss-Newton), starting from the odometric
estimate (red). This strategy is doomed to fail when odometry is inaccurate. In this paper we show that if we solve for rotations first, and
then use this estimate as initialization for iterative methods, we have an astonishing boost in robustness and speed: the initialization (blue)

is visually correct and very close to the optimal solution (green). For 3D rotation estimation, we leverage results from related work;
for instance, the initialization in the figure relies on the chordal relaxation from Martinec and Pajdla [1].

Abstract— Pose graph optimization is the non-convex op-

timization problem underlying pose-based Simultaneous Lo-

calization and Mapping (SLAM). If robot orientations were

known, pose graph optimization would be a linear least-

squares problem, whose solution can be computed efficiently

and reliably. Since rotations are the actual reason why SLAM

is a difficult problem, in this work we survey techniques for

3D rotation estimation. Rotation estimation has a rich history

in three scientific communities: robotics, computer vision, and

control theory. We review relevant contributions across these

communities, assess their practical use in the SLAM domain,

and benchmark their performance on representative SLAM

problems (Fig. 1). We show that the use of rotation estimation

to bootstrap iterative pose graph solvers entails significant boost

in convergence speed and robustness.

I. INTRODUCTION

Pose graph optimization is a state-of-the-art formulation
for SLAM: robot poses are estimated by solving the non-
convex optimization resulting from maximum a-posteriori
estimation. Pose graph solvers rely on nonlinear optimization

L. Carlone and F. Dellaert are with the College of Computing, Georgia In-
stitute of Technology, USA, {luca.carlone@,frank@cc.}gatech.edu.

R. Tron and K. Daniilidis are with the Department of Com-
puter and Information Science, University of Pennsylvania, USA,
{tron,kostas}@seas.upenn.edu.

This work was partially funded by the NSF Award 11115678 “RI: Small:
Ultra-Sparsifiers for Fast and Scalable Mapping and 3D Reconstruction
on Mobile Robots”, and by the grants NSF IIA-1028009, ARL MAST-CTA
W911NF-08-2-0004, ARL RCTA W911NF-10-2-0016, ONR N000141310778, NSF-
DGE-0966142, NSF IIS-1317788, NSF IIP-1439681, and NSF IIS-1426840.

techniques (e.g., Gauss-Newton method), which iteratively
refine the trajectory estimate, starting from an initial guess.

A good initial guess has two merits. First, initializing the
estimate near the optimal solution enables fast convergence.
Second, a good initialization wards off the risk of conver-
gence to local minima, which imply large estimation errors.

Related work in robotics tackles local convergence by
resorting to iterative techniques with larger basin of con-
vergence (e.g., Levenberg-Marquardt, stochastic gradient de-
scent [2], [3]), or exploiting robust kernels [4]. These tech-
niques are usually slow as the improved convergence results
from more conservative updates. For this reason, recent
interest from the robotics community has been devoted to
the computation of a good initial guess (the initialization
problem), including contributions on 2D SLAM [5], [6], [7],
visual-inertial navigation [8], [9], and calibration [10].

In this work we address the initialization problem for 3D
pose graph optimization. Standard approaches for batch pose
graph optimization commonly use robot odometry as initial
guess. As shown in this work, in most cases, this is not a
convenient choice. As specified in the title, the initialization
techniques we discuss in this paper leverage results on
rotation estimation. The interest towards rotation estimation
stems from the fact that, if robot rotations were known, pose
graph optimization would be a linear least-squares problem,
whose global minimizer can be computed efficiently. Recent
work [5], [6], [7] showed that estimating rotations first,

Initialization Techniques for 3D SLAM: a Survey on
Rotation Estimation and its Use in Pose Graph Optimization

Luca Carlone, Roberto Tron, Kostas Daniilidis, and Frank Dellaert
sphere-a torus cube cubicle rim

O
do

m
et

ry
In

iti
al

iz
at

io
n

O
pt

im
um

Fig. 1. State-of-the-art techniques for SLAM optimize robot trajectory via iterative methods (e.g. Gauss-Newton), starting from the odometric
estimate (red). This strategy is doomed to fail when odometry is inaccurate. In this paper we show that if we solve for rotations first, and
then use this estimate as initialization for iterative methods, we have an astonishing boost in robustness and speed: the initialization (blue)

is visually correct and very close to the optimal solution (green). For 3D rotation estimation, we leverage results from related work;
for instance, the initialization in the figure relies on the chordal relaxation from Martinec and Pajdla [1].

Abstract— Pose graph optimization is the non-convex op-

timization problem underlying pose-based Simultaneous Lo-

calization and Mapping (SLAM). If robot orientations were

known, pose graph optimization would be a linear least-

squares problem, whose solution can be computed efficiently

and reliably. Since rotations are the actual reason why SLAM

is a difficult problem, in this work we survey techniques for

3D rotation estimation. Rotation estimation has a rich history

in three scientific communities: robotics, computer vision, and

control theory. We review relevant contributions across these

communities, assess their practical use in the SLAM domain,

and benchmark their performance on representative SLAM

problems (Fig. 1). We show that the use of rotation estimation

to bootstrap iterative pose graph solvers entails significant boost

in convergence speed and robustness.

I. INTRODUCTION

Pose graph optimization is a state-of-the-art formulation
for SLAM: robot poses are estimated by solving the non-
convex optimization resulting from maximum a-posteriori
estimation. Pose graph solvers rely on nonlinear optimization

L. Carlone and F. Dellaert are with the College of Computing, Georgia In-
stitute of Technology, USA, {luca.carlone@,frank@cc.}gatech.edu.

R. Tron and K. Daniilidis are with the Department of Com-
puter and Information Science, University of Pennsylvania, USA,
{tron,kostas}@seas.upenn.edu.

This work was partially funded by the NSF Award 11115678 “RI: Small:
Ultra-Sparsifiers for Fast and Scalable Mapping and 3D Reconstruction
on Mobile Robots”, and by the grants NSF IIA-1028009, ARL MAST-CTA
W911NF-08-2-0004, ARL RCTA W911NF-10-2-0016, ONR N000141310778, NSF-
DGE-0966142, NSF IIS-1317788, NSF IIP-1439681, and NSF IIS-1426840.

techniques (e.g., Gauss-Newton method), which iteratively
refine the trajectory estimate, starting from an initial guess.

A good initial guess has two merits. First, initializing the
estimate near the optimal solution enables fast convergence.
Second, a good initialization wards off the risk of conver-
gence to local minima, which imply large estimation errors.

Related work in robotics tackles local convergence by
resorting to iterative techniques with larger basin of con-
vergence (e.g., Levenberg-Marquardt, stochastic gradient de-
scent [2], [3]), or exploiting robust kernels [4]. These tech-
niques are usually slow as the improved convergence results
from more conservative updates. For this reason, recent
interest from the robotics community has been devoted to
the computation of a good initial guess (the initialization
problem), including contributions on 2D SLAM [5], [6], [7],
visual-inertial navigation [8], [9], and calibration [10].

In this work we address the initialization problem for 3D
pose graph optimization. Standard approaches for batch pose
graph optimization commonly use robot odometry as initial
guess. As shown in this work, in most cases, this is not a
convenient choice. As specified in the title, the initialization
techniques we discuss in this paper leverage results on
rotation estimation. The interest towards rotation estimation
stems from the fact that, if robot rotations were known, pose
graph optimization would be a linear least-squares problem,
whose global minimizer can be computed efficiently. Recent
work [5], [6], [7] showed that estimating rotations first,

↵1

↵2

↵3

↵4

�1

�2

�3

↵1 ↵2 ↵3 ↵4 �1 �2 �3

H↵↵ H↵�

H��H�↵

robot �

robot ↵

y�1 y�2

y�3

y↵1

y↵2

y↵3

y↵4

Hessian Matrix

Distributed Trajectory Estimation with Privacy and Communication Constraints:
A Two-Stage Distributed Gauss-Seidel Approach

Siddharth Choudhary, Luca Carlone, Carlos Nieto, John Rogers, Henrik I. Christensen, Frank Dellaert

Distributed Gauss-Seidel Approach
min

Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

1

min
Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

1

quadratic relaxation

min
Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

1

rewrite

min
Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

1

normal equation

Hessian (H)

} }

g

solve in a distributed manner

min
Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

Hy = g

1

robot �

robot ↵

↵1

↵2

↵3

↵4

�1

�2

�3

↵1 ↵2 ↵3 ↵4 �1 �2 �3

H↵↵ H↵�

H��H�↵
y�1 y�2

y�3

y↵1

y↵2

y↵3

y↵4

Trajectory Estimation Problem Hessian Matrix

Iterate

Distributed Trajectory Estimation with Privacy and Communication Constraints:
A Two-Stage Distributed Gauss-Seidel Approach

Siddharth Choudhary, Luca Carlone, Carlos Nieto, John Rogers, Henrik I. Christensen, Frank Dellaert

Distributed Gauss-Seidel Approach

H
o

: µ = 1.0

H1 : µ > 1.0

yk+1
↵

= H�1
↵↵

�
�H

↵�

yk

�

+ g
↵

�

yk+1
�

= H�1
��

�
�H

�↵

yk

↵

+ g
�

�

1

H
o

: µ = 1.0

H1 : µ > 1.0

yk+1
↵

= H�1
↵↵

�
�H

↵�

yk

�

+ g
↵

�

yk+1
�

= H�1
��

�
�H

�↵

yk

↵

+ g
�

�

1

robot �

robot ↵

↵1

↵2

↵3

↵4

�1

�2

�3

↵1 ↵2 ↵3 ↵4 �1 �2 �3

H↵↵ H↵�

H��H�↵
y�1 y�2

y�3

y↵1

y↵2

y↵3

y↵4

Trajectory Estimation Problem Hessian Matrix

H
o

: µ = 1.0

H1 : µ > 1.0

yk+1
↵

= H�1
↵↵

�
�H

↵�

yk

�

+ g
↵

�

yk+1
�

= H�1
��

�
�H

�↵

yk

↵

+ g
�

�

1

distributed
 Jacobi

error

iteration

centralized
yk+1
�

= H�1
��

�
�H

�↵

yk

↵

+ g
�

�

Distributed Gauss-Seidel Approach

robot �

robot ↵

↵1

↵2

↵3

↵4

�1

�2

�3

↵1 ↵2 ↵3 ↵4 �1 �2 �3

H↵↵ H↵�

H��H�↵
y�1 y�2

y�3

y↵1

y↵2

y↵3

y↵4

Trajectory Estimation Problem Hessian Matrix

yk+1
↵

= H�1
↵↵

�
�H

↵�

yk

�

+ g
↵

�

H
o

: µ = 1.0

H1 : µ > 1.0

yk+1
↵

= H�1
↵↵

�
�H

↵�

yk

�

+ g
↵

�

yk+1
�

= H�1
��

�
�H

�↵

yk

↵

+ g
�

�

1

 distributed
Gauss-Seidel

error

iteration

centralized

Distributed Gauss-Seidel Approach

robot �

robot ↵

↵1

↵2

↵3

↵4

�1

�2

�3

↵1 ↵2 ↵3 ↵4 �1 �2 �3

H↵↵ H↵�

H��H�↵
y�1 y�2

y�3

y↵1

y↵2

y↵3

y↵4

Trajectory Estimation Problem Hessian Matrix

H
o

: µ = 1.0

H1 : µ > 1.0

yk+1
↵

= H�1
↵↵

�
�H

↵�

yk

�

+ g
↵

�

yk+1
�

= H�1
��

�
�H

�↵

yk

↵

+ g
�

�

1

 distributed
Gauss-Seidel

error

iteration

centralized
yk+1
�

= H�1
��

�
�H

�↵

yk

↵

+ g
�

�

Distributed Gauss-Seidel Approach

robot �

robot ↵

↵1

↵2

↵3

↵4

�1

�2

�3

↵1 ↵2 ↵3 ↵4 �1 �2 �3

H↵↵ H↵�

H��H�↵
y�1 y�2

y�3

y↵1

y↵2

y↵3

y↵4

Trajectory Estimation Problem Hessian Matrix

yk+1
↵

= H�1
↵↵

�
�H

↵�

yk

�

+ g
↵

�

H
o

: µ = 1.0

H1 : µ > 1.0

yk+1
↵

= H�1
↵↵

�
�H

↵�

yk

�

+ g
↵

�

yk+1
�

= H�1
��

�
�H

�↵

yk

↵

+ g
�

�

1

 distributed
Gauss-Seidel

error

iteration

centralized

Distributed Gauss-Seidel Approach

robot �

robot ↵

↵1

↵2

↵3

↵4

�1

�2

�3

↵1 ↵2 ↵3 ↵4 �1 �2 �3

H↵↵ H↵�

H��H�↵
y�1 y�2

y�3

y↵1

y↵2

y↵3

y↵4

Trajectory Estimation Problem Hessian Matrix

H
o

: µ = 1.0

H1 : µ > 1.0

yk+1
↵

= H�1
↵↵

�
�H

↵�

yk

�

+ g
↵

�

yk+1
�

= H�1
��

�
�H

�↵

yk

↵

+ g
�

�

1

 distributed
Gauss-Seidel

error

iteration

centralized
yk+1
�

= H�1
��

�
�H

�↵

yk

↵

+ g
�

�

Distributed Gauss-Seidel Approach

robot �

robot ↵

↵1

↵2

↵3

↵4

�1

�2

�3

↵1 ↵2 ↵3 ↵4 �1 �2 �3

H↵↵ H↵�

H��H�↵
y�1 y�2

y�3

y↵1

y↵2

y↵3

y↵4

Trajectory Estimation Problem Hessian Matrix

yk+1
↵

= H�1
↵↵

�
�H

↵�

yk

�

+ g
↵

�

H
o

: µ = 1.0

H1 : µ > 1.0

yk+1
↵

= H�1
↵↵

�
�H

↵�

yk

�

+ g
↵

�

yk+1
�

= H�1
��

�
�H

�↵

yk

↵

+ g
�

�

1

 distributed
Gauss-Seidel

error

iteration

centralized

Distributed Gauss-Seidel Approach

robot �

robot ↵

↵1

↵2

↵3

↵4

�1

�2

�3

↵1 ↵2 ↵3 ↵4 �1 �2 �3

H↵↵ H↵�

H��H�↵
y�1 y�2

y�3

y↵1

y↵2

y↵3

y↵4

Trajectory Estimation Problem Hessian Matrix

H
o

: µ = 1.0

H1 : µ > 1.0

yk+1
↵

= H�1
↵↵

�
�H

↵�

yk

�

+ g
↵

�

yk+1
�

= H�1
��

�
�H

�↵

yk

↵

+ g
�

�

1

 distributed
Gauss-Seidel

error

iteration

centralized
yk+1
�

= H�1
��

�
�H

�↵

yk

↵

+ g
�

�

Distributed Gauss-Seidel Approach

robot �

robot ↵

↵1

↵2

↵3

↵4

�1

�2

�3

↵1 ↵2 ↵3 ↵4 �1 �2 �3

H↵↵ H↵�

H��H�↵
y�1 y�2

y�3

y↵1

y↵2

y↵3

y↵4

Trajectory Estimation Problem Hessian Matrix

yk+1
↵

= H�1
↵↵

�
�H

↵�

yk

�

+ g
↵

�

H
o

: µ = 1.0

H1 : µ > 1.0

yk+1
↵

= H�1
↵↵

�
�H

↵�

yk

�

+ g
↵

�

yk+1
�

= H�1
��

�
�H

�↵

yk

↵

+ g
�

�

1

 distributed
Gauss-Seidel

error

iteration

centralized

Distributed Gauss-Seidel Approach

robot �

robot ↵

↵1

↵2

↵3

↵4

�1

�2

�3

↵1 ↵2 ↵3 ↵4 �1 �2 �3

H↵↵ H↵�

H��H�↵
y�1 y�2

y�3

y↵1

y↵2

y↵3

y↵4

Trajectory Estimation Problem Hessian Matrix

H
o

: µ = 1.0

H1 : µ > 1.0

yk+1
↵

= H�1
↵↵

�
�H

↵�

yk

�

+ g
↵

�

yk+1
�

= H�1
��

�
�H

�↵

yk

↵

+ g
�

�

1

 distributed
Gauss-Seidel

error

iteration

centralized
yk+1
�

= H�1
��

�
�H

�↵

yk

↵

+ g
�

�

Distributed Gauss-Seidel Approach

The approach has the following merits:

1. Proven convergence to  
centralized. Fast convergence  
with smart initialization

2. Communication is linear in
number of rendezvous

3. Scalability in the number of
robots

4. Resilience to noise

Without
Flagged

Initialization

With
Flagged

Initialization

Simulation Results

Distributed Trajectory Estimation with Privacy and Communication Constraints:
A Two-Stage Distributed Gauss-Seidel Approach

Siddharth Choudhary, Luca Carlone, Carlos Nieto, John Rogers, Henrik I. Christensen, Frank Dellaert

#rendezvous

Distributed Trajectory Estimation with Privacy and Communication Constraints:
A Two-Stage Distributed Gauss-Seidel Approach

Siddharth Choudhary, Luca Carlone, Carlos Nieto, John Rogers, Henrik I. Christensen, Frank Dellaert

Simulation Results

The approach has the following merits:

1. Proven convergence to  
centralized. Fast convergence 
with smart initialization

2. Communication is linear in
number of rendezvous

3. Scalability in the number of
robots

4. Resilience to noise

Increasing 
number of 

robots

Increasing 
measurement

noise

Distributed Trajectory Estimation with Privacy and Communication Constraints:
A Two-Stage Distributed Gauss-Seidel Approach

Siddharth Choudhary, Luca Carlone, Carlos Nieto, John Rogers, Henrik I. Christensen, Frank Dellaert

Simulation Results

The approach has the following merits:

1. Proven convergence to  
centralized. Fast convergence 
with smart initialization

2. Communication is linear in
number of rendezvous

3. Scalability in the number of
robots

4. Resilience to noise

7

#Robots
Distributed Jacobi Centralized

⌘r = ⌘p = 10�1 ⌘r = ⌘p = 10�2 Two-Stage GN

#Iter Cost #Iter Cost Cost Cost

4 10 1.9 65 1.9 1.9 1.9
9 14 5.3 90 5.2 5.2 5.2
16 16 8.9 163 8.8 8.8 8.7
25 17 16.2 147 16.0 16.0 15.9
36 28 22.9 155 22.7 22.6 22.5
49 26 35.1 337 32.9 32.7 32.5

TABLE I
NUMBER OF ITERATIONS AND COST ATTAINED IN PROBLEM (3) BY THE DJ
ALGORITHM (FOR TWO CHOICES OF THE STOPPING CONDITIONS), VERSUS

A CENTRALIZED TWO-STAGE APPROACH AND A GN METHOD. RESULTS
ARE SHOWN FOR SCENARIOS WITH INCREASING NUMBER OF ROBOTS.

Measurement Distributed Jacobi Centralized
noise ⌘r=⌘p=10�1 ⌘r=⌘p=10�2 Two-Stage GN

�r(�) �t(m) #Iter Cost #Iter Cost Cost Cost

1 0.05 8.5 2.1 51.0 1.8 1.8 1.8
5 0.1 21.8 14.8 197.8 14.0 14.0 13.9
10 0.2 35.6 58.4 277.7 56.6 56.6 56.0
15 0.3 39.8 130.5 236.8 128.4 129.3 126.0

TABLE II
NUMBER OF ITERATIONS AND COST ATTAINED IN PROBLEM (3) BY THE DJ
ALGORITHM (FOR TWO CHOICES OF THE STOPPING CONDITIONS), VERSUS

A CENTRALIZED TWO-STAGE APPROACH AND A GN METHOD. RESULTS
ARE SHOWN FOR INCREASING MEASUREMENT NOISE.

as accurate as a GN method. When using a strict stopping
condition (⌘r = ⌘p = 10�2), the DJ approach produces the
same error as the centralized counterpart (difference smaller
than 1%). Relaxing the stopping conditions to ⌘r = ⌘p = 10�1

implies a consistent reduction in the number of iterations, with
a small loss in accuracy (cost increase is only significant for
the scenario with 49 robots). In summary, the DJ algorithm
(with ⌘r = ⌘p = 10�1) ensures accurate estimation within few
iterations, even for large teams.

Sensitivity to measurement noise. We test the accuracy
of our approach even further by evaluating the cost and the
number of iterations for increasing levels of noise. Table II
shows that the DJ approach is able to replicate the accuracy of
the centralized two-stage approach, regardless the noise level.

Scalability in the number of separators. In order to eval-
uate the impact of the number of separators on convergence,
we simulated two robots moving along parallel tracks for 10
time stamps. The number of communication links were varied
from 1 (single communication) to 10 (communication at every
time), hence the number of separators (for each robot) ranges
from 1 to 10. Fig. 9a shows the number of iterations required
by the DJ algorithm (⌘r = ⌘p = 10�1), for increasing number
of communication links. The number of iterations is fairly
insensitive to the number of communication links.

Fig. 9b compares the information exchanged in the DJ
algorithm against a state-of-the-art algorithm, DDF-SAM [18].
In DDF-SAM, each robot sends KGN

h
sBp + (sBp)

2
i

bytes,
where KGN is the number of iterations required by a GN

method applied to problem (3) (we consider the best case
KGN = 1), s is the number of separators and Bp is the size
of a pose in bytes. In the DJ algorithm, each robots sends
Kr

DJ (sBr) +Kp
DJ (sBp) bytes, where Kr

DJ and Kp
DJ are the

(a) (b)
Fig. 9. (a) Average number of iterations versus number of separators for the
DJ algorithm. (b) Communication burden (bytes of exchanged information)
for the DJ and DDF-SAM algorithms, for increasing number of separators.

Fig. 10. (Left) Clearpath Jackal robot used for the field tests: platform and
sensor layout; (right) snapshot of the test facility with the two Jackal robots.

number of iterations required by the DJ algorithm to solve
the linear systems (7) and (12), respectively, and Br is the
size of a rotation (in bytes). We assume Br = 9 doubles (72
bytes)1 and Bp = 6 doubles (48 bytes). From Fig. 9b we see
that the communication burden of DDF-SAM quickly becomes
unsustainable, while the linear increase in communication of
the DJ algorithm implies large communication saving.

B. Field Experiments

We tested the DJ approach on field data collected by
two Jackal robots (Fig. 10), moving in a MOUT (Military
Operations in Urban Terrain) test facility. Each robot collects
3D scans using an Hokuyo 30LS-EW with a custom tilt
mechanism, and uses IMU and wheel odometry to measure
its ego-motion. 3D scans are used to compute inter-robot
measurements (via ICP) during rendezvous. We evaluated our
approach in three different floors of a building in the facility.

Fig. 11 shows the trajectories of the two robots in three runs.
The figure compares the DJ estimate and the corresponding
centralized estimate. Examples of 3D point clouds and occu-
pancy grid maps, reconstructed from the trajectory estimates,
are given in Fig. 1. Quantitative results are given in Table III,
which reports the cost attained by the DJ algorithm (against a
centralized benchmark) and the number of iterations.

#Expt
Distributed Jacobi Centralized

⌘r = ⌘p = 10�1 ⌘r = ⌘p = 10�2 Two-Stage GN

#Iter Cost #Iter Cost Cost Cost

1 10 0.30 78 0.24 0.23 0.23
2 16 0.62 511 0.56 0.54 0.54
3 28 1.20 606 0.87 0.84 0.84

TABLE III
PERFORMANCE OF DJ ON FIELD DATA.

1In the linear system (7) we relax the orthogonality constraints hence we
cannot parametrize the rotations with a minimal 3-parameter representation.

We tested the proposed approach on field
data collected by two to four Jackal robots,
moving in a military test facility. We use the
estimated trajectories to reconstruct a 3D

map of the facility.
Distributed Trajectory Estimation with Privacy and Communication Constraints:

A Two-Stage Distributed Gauss-Seidel Approach
Siddharth Choudhary, Luca Carlone, Carlos Nieto, John Rogers, Henrik I. Christensen, Frank Dellaert

Field Experiments

Distributed Trajectory Estimation with Privacy and Communication Constraints:
A Two-Stage Distributed Gauss-Seidel Approach

Siddharth Choudhary, Luca Carlone, Carlos Nieto, John Rogers, Henrik I. Christensen, Frank Dellaert

Field Experiments (4 Robots)

Thank you!

For further information, please come to the
interactive session: 1.4 (Balcony)

Distributed Trajectory Estimation with Privacy and Communication Constraints:
A Two-Stage Distributed Gauss-Seidel Approach

Siddharth Choudhary, Luca Carlone, Carlos Nieto, John Rogers, Henrik I. Christensen, Frank Dellaert

14

Point Cloud Distributed Centralized Occupancy Grid

Fig. 23. Shows the reconstructed point cloud of a floor (left). Trajectories of the two robots are shown in red and blue, while inter-robot measurements are
shown in light gray (middle). The estimated trajectories overlaid on an occupancy grid map is shown on the right.

14

Point Cloud Distributed Centralized Occupancy Grid

Fig. 23. Shows the reconstructed point cloud of a floor (left). Trajectories of the two robots are shown in red and blue, while inter-robot measurements are
shown in light gray (middle). The estimated trajectories overlaid on an occupancy grid map is shown on the right.

14

Point Cloud Distributed Centralized Occupancy Grid

Fig. 23. Shows the reconstructed point cloud of a floor (left). Trajectories of the two robots are shown in red and blue, while inter-robot measurements are
shown in light gray (middle). The estimated trajectories overlaid on an occupancy grid map is shown on the right.

Point Cloud Distributed Centralized Occupancy Grid

14

Point Cloud Distributed Centralized Occupancy Grid

Fig. 23. Shows the reconstructed point cloud of a floor (left). Trajectories of the two robots are shown in red and blue, while inter-robot measurements are
shown in light gray (middle). The estimated trajectories overlaid on an occupancy grid map is shown on the right.

14

Point Cloud Distributed Centralized Occupancy Grid

Fig. 23. Shows the reconstructed point cloud of a floor (left). Trajectories of the two robots are shown in red and blue, while inter-robot measurements are
shown in light gray (middle). The estimated trajectories overlaid on an occupancy grid map is shown on the right.

14

Point Cloud Distributed Centralized Occupancy Grid

Fig. 23. Shows the reconstructed point cloud of a floor (left). Trajectories of the two robots are shown in red and blue, while inter-robot measurements are
shown in light gray (middle). The estimated trajectories overlaid on an occupancy grid map is shown on the right.

