Distributed Trajectory Estimation with Privacy and Communication Constraints: a Two-Stage Distributed Gauss-Seidel Approach

Siddharth Choudhary¹, Luca Carlone², Carlos Nieto¹, John Rogers³, Henrik I. Christensen¹, Frank Dellaert¹

¹ Institute for Robotics and Intelligent Machines, Georgia Tech
² Laboratory for Information and Decision Systems, MIT
³ Army Research Lab
Motivation

Goal: distributed estimation of trajectories of robots in a team

Applications:
- mapping
- exploration
- ...

why distributed: avoid exchange of large amount of data
- small flying robots
- underwater vehicles

Related work:
- distributed SLAM
 [Dong et al., Paull et al., Bailey et al.]
- multi robot localization
 [Roumeliotis et al., Tron and Vidal]
- distributed optimization
 [Cunningham et al., Nerurkar et al., Franceschelli and Gasparri, Aragues et al.]

State of the art: DDF-SAM requires communication cost quadratic in the number of rendezvous.
Cooperative estimation of 3D robot trajectories from relative pose measurements, with the following constraints:

1. Communication only occurs during rendezvous.

2. Data exchange must be minimal (due to limited bandwidth and privacy).

Example application of Privacy Constraint:
Optimization of Multiple trajectories collected through Google Project Tango (courtesy: Simon Lynen)
Contribution

Trajectory estimation as Pose Graph Optimization:

Related work: iterative optimization

Our approach: 2 stage [Carlone et al. (ICRA 2015)]

- Each phase requires solving a linear system
- We use the Gauss-Seidel algorithm as distributed linear solver
Distributed Gauss-Seidel Approach

\[
\min_{\mathbf{R}_i \in SO(3)} \sum_{(i,j) \in \mathcal{E}} \omega_R^2 \| \mathbf{R}_j - \mathbf{R}_i \bar{\mathbf{R}}_i \|_F^2
\]

\[
\min_{\mathbf{R}_i} \sum_{(i,j) \in \mathcal{E}} \omega_R^2 \| \mathbf{R}_j - \mathbf{R}_i \bar{\mathbf{R}}_i \|_F^2
\]

\[
\min \| A\mathbf{y} - \mathbf{b} \|^2
\]

\[
(A^T A) \mathbf{y} = A^T \mathbf{b}
\]

Hessian (H)

\[
H\mathbf{y} = \mathbf{g}
\]

solve in a distributed manner
Distributed Trajectory Estimation Problem

Hessian Matrix

\[y^{k+1}_\alpha = H^{-1}_{\alpha\alpha} (H_{\alpha\beta} y^{k}_\beta + g_\alpha) \]

\[y^{k+1}_\beta = H^{-1}_{\beta\beta} (H_{\beta\alpha} y^{k}_\alpha + g_\beta) \]
Distributed Gauss-Seidel Approach

Trajectory Estimation Problem

$$y_{\alpha_1}$$
$$y_{\alpha_2}$$
$$y_{\alpha_3}$$
$$y_{\alpha_4}$$

robot α

$$y_{\beta_1}$$
$$y_{\beta_2}$$
$$y_{\beta_3}$$

robot β

Hessian Matrix

$$y^{k+1}_\alpha = H^{-1}_{\alpha\alpha} \left(-H_{\alpha\beta} y^k_\beta + g_\alpha \right)$$

$$y^{k+1}_\beta = H^{-1}_{\beta\beta} \left(-H_{\beta\alpha} y^k_\alpha + g_\beta \right)$$

Distributed Gauss-Seidel Approach

Iteration

Error

Centralized
Distributed Gauss-Seidel Approach

Trajectory Estimation Problem

robot α

robot β

\[y_{\alpha}^{k+1} = H_{\alpha\alpha}^{-1} \left(-H_{\alpha\beta} y_{\beta}^k + g_\alpha \right) \]

\[y_{\beta}^{k+1} = H_{\beta\beta}^{-1} \left(-H_{\beta\alpha} y_{\alpha}^k + g_\beta \right) \]

Hessian Matrix

distributed Gauss-Seidel

centralized

error

iteration
Distributed Gauss-Seidel Approach

Trajectory Estimation Problem

robot α

y_{α_1}

y_{α_2}

y_{α_3}

y_{α_4}

robot β

y_{β_1}

y_{β_2}

y_{β_3}

Hessian Matrix

$H_{\alpha\alpha}$

$H_{\alpha\beta}$

$H_{\beta\alpha}$

$H_{\beta\beta}$

$y^{k+1}_\alpha = H^{-1}_{\alpha\alpha} \left(-H_{\alpha\beta} y^{k}_\beta + g_\alpha \right)$

$y^{k+1}_\beta = H^{-1}_{\beta\beta} \left(-H_{\beta\alpha} y^{k}_\alpha + g_\beta \right)$

Distributed Gauss-Seidel

centralized
Distributed Gauss-Seidel Approach

Trajectory Estimation Problem

\[
y^{k+1}_{\alpha} = H^{-1}_{\alpha\alpha} \left(-H_{\alpha\beta} y^k_{\beta} + g_{\alpha} \right)
\]

\[
y^{k+1}_{\beta} = H^{-1}_{\beta\beta} \left(-H_{\beta\alpha} y^k_{\alpha} + g_{\beta} \right)
\]
Distributed Gauss-Seidel Approach

Trajectory Estimation Problem

Hessian Matrix

\[y^{k+1}_{\alpha} = H^{-1}_{\alpha\alpha} \left(-H_{\alpha\beta} y^{k}_{\beta} + g_{\alpha} \right) \]

\[y^{k+1}_{\beta} = H^{-1}_{\beta\beta} \left(-H_{\beta\alpha} y^{k}_{\alpha} + g_{\beta} \right) \]

distributed Gauss-Seidel

centralized
Distributed Gauss-Seidel Approach

Trajectory Estimation Problem

\[y_{\alpha_{1}} \quad y_{\alpha_{3}} \quad y_{\alpha_{4}} \]

robot \(\alpha \)

\[y_{\alpha_{2}} \]

robot \(\beta \)

\[y_{\beta_{1}} \quad y_{\beta_{2}} \quad y_{\beta_{3}} \]

Hessian Matrix

\[\begin{array}{cccccc}
\alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} & \beta_{1} & \beta_{2} & \beta_{3} \\
\hline
\alpha_{1} & & & & & & \\
\alpha_{2} & & & & & & \\
\alpha_{3} & & & & & & \\
\alpha_{4} & & & & & & \\
\beta_{1} & & & & & & \\
\beta_{2} & & & & & & \\
\beta_{3} & & & & & & \\
\end{array} \]

\[H_{\alpha\alpha} \quad H_{\alpha\beta} \]

\[y_{\alpha_{k+1}} = H_{\alpha\alpha}^{-1} (-H_{\alpha\beta} y_{\beta_{k}} + g_{\alpha}) \]

\[y_{\beta_{k+1}} = H_{\beta\beta}^{-1} (-H_{\beta\alpha} y_{\alpha_{k}} + g_{\beta}) \]

error

iteration

distributed Gauss-Seidel

centralized
Distributed Gauss-Seidel Approach

Trajectory Estimation Problem

robot α

y_{α_1}

y_{α_2}

y_{α_3}

y_{α_4}

robot β

y_{β_1}

y_{β_2}

y_{β_3}

Hessian Matrix

\[
\begin{array}{cccccc}
\alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 & \beta_1 & \beta_2 & \beta_3 \\
\alpha_1 & & & & & & \\
\alpha_2 & & \mathbf{H_{\alpha\alpha}} & & & & \\
\alpha_3 & & & \mathbf{H_{\beta\alpha}} & & & \\
\alpha_4 & & & & \mathbf{H_{\beta\beta}} & & \\
\beta_1 & & & & & \mathbf{H_{\beta\alpha}} & \\
\beta_2 & & & & \mathbf{H_{\beta\beta}} & & \\
\beta_3 & & & & & & \\
\end{array}
\]

\[
y^{k+1}_{\alpha} = H_{\alpha\alpha}^{-1} (-H_{\alpha\beta} y^k_{\beta} + g_{\alpha})
\]

\[
y^{k+1}_{\beta} = H_{\beta\beta}^{-1} (-H_{\beta\alpha} y^k_{\alpha} + g_{\beta})
\]

distributed Gauss-Seidel

centralized

error

iteration
Distributed Gauss-Seidel Approach

Trajectory Estimation Problem

robot α

y_{α_1}

y_{α_3}

y_{α_4}

robot β

y_{β_1}

y_{β_2}

y_{β_3}

$\begin{align*}
y_{\alpha}^{k+1} &= H^{-1}_{\alpha \alpha} \left(-H_{\alpha \beta} y_{\beta}^{k} + g_{\alpha} \right) \\
y_{\beta}^{k+1} &= H^{-1}_{\beta \beta} \left(-H_{\beta \alpha} y_{\alpha}^{k} + g_{\beta} \right)
\end{align*}$

Hessian Matrix

$\begin{array}{cccc}
\alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 \\
\alpha_1 & H_{\alpha \alpha} & & \\
\alpha_2 & & H_{\beta \alpha} & \\
\alpha_3 & & & H_{\beta \beta} \\
\alpha_4 & & & \\
\beta_1 & & & \\
\beta_2 & & & \\
\beta_3 & & & \\
\end{array}$

distributed Gauss-Seidel

centralized

error

iteration
Distributed Gauss-Seidel Approach

Trajectory Estimation Problem

robot α

y_{α_1}

y_{α_2}

y_{α_3}

y_{α_4}

robot β

y_{β_1}

y_{β_2}

y_{β_3}

$y_{k+1}^{\alpha} = H^{-1}_{\alpha\alpha} (-H_{\alpha\beta} y_{k}^{\beta} + g_{\alpha})$

$y_{k+1}^{\beta} = H^{-1}_{\beta\beta} (-H_{\beta\alpha} y_{k}^{\alpha} + g_{\beta})$

Hessian Matrix

$H_{\alpha\alpha}$

$H_{\alpha\beta}$

$H_{\beta\alpha}$

$H_{\beta\beta}$

Distributed Gauss-Seidel Approach
Simulation Results

The approach has the following merits:

1. **Proven convergence to centralized. Fast convergence with smart initialization**

2. Communication is linear in number of rendezvous

3. Scalability in the number of robots

4. Resilience to noise
Simulation Results

The approach has the following merits:

1. Proven convergence to centralized. Fast convergence with smart initialization

2. Communication is linear in number of rendezvous

3. Scalability in the number of robots

4. Resilience to noise
Simulation Results

The approach has the following merits:

1. Proven convergence to centralized. Fast convergence with smart initialization

2. Communication is linear in number of rendezvous

3. Scalability in the number of robots

4. Resilience to noise
Field Experiments

We tested the proposed approach on field data collected by two to four Jackal robots, moving in a military test facility. We use the estimated trajectories to reconstruct a 3D map of the facility.
Field Experiments (4 Robots)
Thank you!

For further information, please come to the interactive session: 1.4 (Balcony)