
A Minimal Representation of a Map to Localize and Navigate through an Indoor
Environment

1. Introduction
Localization and Navigation in an indoor environment

are one of the basic problems in the area of robotics. Most
of the recent SLAM or SfM based mapping systems use low
level features (generally SIFT or SURF features) to infer the
3D structure of the environment and estimates it’s location
with respect to the inferred 3D structure. The size of the
map becomes large with the increase in the size of the en-
vironment. Such heavy maps cannot be loaded into robots
having a low memory constraint and therefore estimating a
memory efficient map representation is interesting in these
scenarios. In this paper we explore some techniques to es-
timate a minimal representation of a map to navigate and
localize through an indoor environment without much loss
of accuracy.

There are two methods to navigate from one place to an-
other, behavior/affordance based navigation (Figure 1) and
map based navigation (Figure 2). In the case of behav-
ior/affordance based navigation, we do not create a map of
the environment and do not do localization and path plan-
ning. It is based on the belief that there exist a particu-
lar behavior based solution to a particular navigation prob-
lem. For example, to navigate from room A to room B one
can design a left wall follower and a room B detector [25].
The decision in this case is made on the all possible actions
available in the local environment and then that action is
performed. Another way to navigate is through map based
navigation. Localization is a necessary building block for
navigating a robot from one room to another using map
based navigation. Through localization a robot can iden-
tify its current position, plan its path through the map and
detect if is has reached the goal. However map based navi-
gation requires continuous localization of a robot to identify
its location with respect to the map.

We believe that a proper balance between the map based
navigation and behavior based navigation can lead to a min-
imal representation of a map by filling the gaps using local
behavior based navigation. A better behavior based navi-
gation requires a higher spatial understanding of the envi-
ronment. For example, if a robot can understand the local
structure of the room and recognize the gates and corridors
then each node in the map can represent a particular loca-

tion and the robot can navigate through the map using the
local behavior based navigation by recognizing gates and
corridors to reach the destination. Using topological map
to represent the map can be particularly useful where each
node represents an entity (bag of features, 3D structure etc.)
used to localize a robot in the global map and edge con-
nect one node to another which is navigated using behavior
based navigation.

Below we discuss the requirements of behav-
ior/affordance based and map based navigation techniques.
Holistic spatial understanding of the environment is a
pre-requisite for behavior based navigation tasks. Includ-
ing semantic spatial knowledge can greatly enhance the
performance of robots by providing a more meaningful
representation for performing complex tasks. Semantic
representation of the environment leads to the formation
of spatial primitives each having specific properties and
which excites the desired set of behaviors from the robot.
Analogously if the robot can understand higher spatial
primitive then the map can be built using these spatial prim-
itives itself. This results in memory efficient techniques for
building a map where we represent landmarks using higher
level spatial primitives instead of lower level features. In
this paper, we explore contemporary works in the relevant
area of high level scene understanding for behavior based
navigation and the map representations which can encode
these features. We also propose a technique to create a
minimal representation for a map to localize and navigate
through an indoor environment.

2. Related Work
First of all we discuss the related work in the area of

scene understanding required for behavior based naviga-
tion. Holistic scene understanding using images and videos
which has been studied by the computer vision community
and to use that along with SLAM/SfM system which is be-
ing explored by the robotics community to produce a rich
semantic map of the environment. Better understanding of
the environment directly affects the map representation used
to navigate through it. In the next section we discuss the
possible map representations and the related work in that
area.
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Figure 1. Architecture of Behavior based Navigation (Source: Siegwart and Nourbakhsh [25])

Figure 2. Architecture of Map based Navigation (Source: Siegwart and Nourbakhsh [25])

2.1. Holistic Scene Understanding

Yao et al. [34] propose an approach to holistic scene un-
derstanding that simutaneously reasons about regions, lo-
cation, class, spatial extent of objects as well as the type
of scene. The problem is formulated as inference in condi-
tional random field as given in Equation 1.

p(a) = p(x,y, z,b, s) =
1

Z

∏
type

∏
α

ψtype
α (aα) (1)

Here x and y represents the segmentation random vari-
ables, z represents the presence of different classes in a
scene and b represents the set of all candidate object de-
tections.

Schwing et al. [23] estimated the 3D scene layout of a
room given a single image using a concept of integral geom-
etry which made the structured prediction framework more
efficient. Later, Schwing et al. [24] used branch and bound
approach to split of space of 3D layouts and estimate the ex-

act solution in less time than approximate inference tools.
In a similar method, Xiao et al. [33] used part-based de-
tector to model the appearance of the cuboid corners and
internal edges while enforcing consistency to a 3D cuboid
model. They were able to detect rectangular cuboids across
many different object categories. Li et al. [17] proposed
a feedback enabled cascaded classification model to maxi-
mize the joint likelihood of each of the sub-tasks like scene
categorization, depth estimation, object detection and re-
quires only a ’black-box’ interface to the original classifier
for each sub-task. Hedau et al. [11] estimated free space
in a single image by using “box” detector to localize major
furniture objects.

Hoiem and Savarese [12] did a survey of the recent work
in the area of 3D scene understanding and 3D object recog-
nition. Jianxiong Xiao [32] also gave a good overview of the
related work in 3D reasoning from single image. According
to Xiao, obtaining a depth map to capture a distance at each
pixel is analogous to inventing a digital camera to capture
the color value at each pixel. The gap between low-level
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depth measurements and high level shape understanding is
just as large as the gap between pixel colors and high level
semantic perception.

Humans as a Cue: Human activity is a very strong cue
for 3D understanding of scenes. Gupta et al. [9] used the
3D scene geometry to estimate the human workspace. This
method built upon the work in indoor scene understanding
and the availability of motion capture data to create a joint
space of human poses and scene geometry by modeling the
physical interactions between the two. Recently, Fouhey et
al. [7] investigated the use of human pose for scene under-
standing. They used the estimated human pose to extract
the functional and geometrical constraints about the scene.
They showed that observing people performing different ac-
tions can significantly improve estimate of 3D scene geom-
etry.

2.2. Scene understanding from RGBD image

Wide availability of inexpensive depth sensors like
Kinect has resulted in sudden increase in the interest on ex-
ploiting the additional depth information by the robotics and
vision community [1, 14, 15, 22]. Koppula et al. [1, 14, 15]
used graphical model capturing various image feature and
contextual relationship to semantically label the point cloud
with object classes and used that on a mobile robot for find-
ing objects in a large cluttered room. Ren et al. [22] pro-
posed algorithms and features to do dense scene labeling of
indoor scenes using RGB-D images.

2.3. Semantic structure from motion

Bao et al. [5] proposed a framework to jointly recognize
objects and at the same time discover their spatial organi-
zation in 3D. To achieve this they introduced a joint prob-
ability model to detect object and estimate 3D structure in
a coherent fashion. The joint probability model is specified
using Equation 2.

arg max
Q,O,C

Pr(q,u,o|Q,C,O) =

arg max
Q,O,C

Pr(q,u|Q,C)Pr(o|O,C)
(2)

Here Q,O,C are the set of 3D points, 3D objects and
camera parameters respectively. Similarly q,u,o are the
point measurments, indicator variable and object measur-
ments respectively.

In a more recent paper, Bao et al. [4] model the inter-
action between points, objects and regions and jointly esti-
mate the location and pose of objects, regions, points and
cameras in the 3D scene. The estimation problem is for-
mulated as an energy maximization framework over points,
regions and objects as showin in Equation 3.

Q,O,B,C = arg max
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Here ψCQ
s , ψCO

t , ψCB
r measures the consistency of 3D

points, objects and regions with the image measurment re-
spectively. ψOQ

t,s , ψ
OB
t,r , ψ

BQ
r,s evaluates the interactions be-

tween difference scene components.

2.4. Semantic Mapping for Robots

Pronobis et al. [19, 20] proposed a complete and efficient
representation of indoor spaces including semantic informa-
tion. They use a multi-layered semantic mapping represen-
tation to combine information about the existence of objects
in the environment with knowledge about the topology and
semantic properties of space such as room size, shape and
general appearance. It is used to infer semantic categories
of rooms and predict existence of objects and values of other
spatial properties.

The spatial knowledge is represented using four layers
of abstraction. At the lowest level is the sensory layer
which stores the feature level representation of the imme-
diate environment of the robot. Above this are the place
and categorical layers which contains the topological map
and the pre-trained categorical models. Topmost layer is
the conceptual layer which creates a unified representation
relating sensed instance knowledge to general conceptual
knowledge. This is a very abstract layer representing hu-
man knowledge about the environment and is generally not
needed for tasks like autonomous navigation. A task like
searching objects which requires higher cognitive ability
will require this layer of abstraction. Chain graph proba-
bilistic model is used to implement the conceptual layer.

In an another set of work, Tsai et al. [29] estimates a set
of indoor structure hypotheses from a single image which
is subsequently refined using the information from motion
cues. The likelihood function in this case is computed by
comparing the predicted location of point features on the
environment model to their actual tracked locations in the
image stream. Following that, Tsai et al. [28] extended the
work to incorporate incremental changes to the hypotheses
by using children hypotheses describing the same environ-
ment in more detail.

Aydemir and Jensfelt [3] used the correlation between
the 3D structure and object placement to predict object lo-
cations. Aydemir et al. [2] analyzed a corpus of 567 floors,
6426 spaces with 91 room types and 8446 connections be-
tween rooms corresponding to real places and used that
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knowledge to predict the rest of the topology given a par-
tial graph.

2.5. Planning to Perceive

An interesting area especially from the point of view of
robotics is the ability to actively plan the robot movement
to maximize the information gain or gain a reward with re-
spect to a certain task. Göbelbecker et al. [8] presented a
planning approach to active object search in unknown en-
vironments. A hierarchical model for representing object
locations is used with which the planner is able to perform
the indirect search. Vélez et al. [30, 31] describe an online
planning framework to enable active exploration of possi-
ble object detections. They present a probabilistic approach
where vantage points are identified which provide a more
informative view of a potential object. However, the cost
of taking a detour is then weighed against the increase in
confidence regarding a particular object and the time taken
to reach the actual destination.

2.6. Saliency based Mapping

Saliency plays an important role in identifying the im-
portant regions in an image and can be used to reduce the
number of features which are used in mapping. Only salient
features that are most likely to match under different illumi-
nation conditions, repeatable across different poses and are
most informative for localizing a new image when identified
across all images can be used to generate a map. Borji and
Itti presented a taxonomy of different models to estimate
saliency in images and videos [6]. Some of the techniques
for saliency based mapping can be as described below.

• Posthoc Compression: Without any prior information
about the environment, how much can we compress
the optimized SLAM data with minimal loss in the ac-
curacy. This would give us a set of points and cameras
which are informative to navigation and can result in
3D saliency map of the environment. It can be done
by minimizing the overall uncertainty between the 3D
points selected and the cameras. Skeletal graph based
compression [26] over the salient features can be used
to give a minimal representation of the map without
losing much accuracy

• Online Compression: Adding rules about the environ-
ment, how does the saliency map changes. It can also
include rules like where to look for the salient features
and some of the predefined informative salient objects
in an indoor environment.

2.7. Image Retrieval based Localization

In a series of techniques popularized by Hays and Efros
[10], recent large scale image based localization techniques
estimates the location of the query frame by finding the

nearest frame from the dataset consisting of image and loca-
tion pairs. This is a purely data driven approach and is lim-
ited by the space not captured by the images in the dataset.
The accuracy of image retrieval based localization improves
with the space covered by the images in the dataset. An-
other problem with this approach is the large amount of
variation in the scene appearance due to the changes in illu-
mination, pose etc.

Overall, all of these approaches can be used together to
form a structured knowledge of the environment which can
be used by the robot to form a semantic representation of
the surrounding and intelligently perform different tasks.

3. Related work in Map Representation
Benjamin Kuipers [16] was one of the first researchers to

provide a cognitive map representation to model the knowl-
edge a person has about the spatial structure of a large scale
environment. The functions of the cognitive map are to as-
similate new information about the environment, to repre-
sent the current position, and to answer route-finding and
relative-position problems. The model analyzes the cogni-
tive map in terms of symbolic descriptions of the environ-
ment and operations on those descriptions.

Sebastian Thrun [27] abstracted a topological map from
an underlying metric map. He first builds a global occu-
pancy map, and then forms a roadmap network for plan-
ning, using Voronoi diagrams. He shows that planning on
the topological map leads to path lengths only a few percent
greater than the grid-based paths. Zivkovic et al. [35] used a
graph-cut clustering model rather than Voronoi diagrams to
present the similar system. Ranganathan and Dellaert [21]
proposed a probabilistic approach to infer on the space of
all possible topological maps given all measurements and
the posterior is updated incrementally with each successive
measurement.

4. Related work in Localization
Dervish: office navigating robot by Illah Nourbakhsh

[18] was one the first robots to succesfully navigate using
a topological map using its own sensors to navigate from a
chosen starting position to a target room. It also won the
1994 AAAI National Robot Contest. Dervish employed
a probabilistic Markov localization and used a multiple-
hypothesis belief state over a topological environmental
representation.

5. Related work in Navigation
Konolige et al. [13] recently proposed an approach for

navigation in hybrid maps consisting of a topological graph
overlaid with local occupancy grids. The topological graph
is built on top of a graph SLAM system, which can be ef-
ficiently optimized even for very large environments. The
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navigation is done locally using metric maps which are con-
nected using a topological map.

6. Proposed Approach
The three major components involved in this work are

Map Representation, Localization and Navigation.

6.1. Map Representation

Map representation is one of the most important compo-
nent of the whole pipeline. The map representation directly
affects the techniques used to localize in it and navigate
through it. We believe that a topological map representa-
tion consisting of nodes and edges is a generic model to
represent a map. It is analogous to Kuipers PATH-PLACE
model. According to Siegwart and Nourbakhsh [25] there
are three important fundamental relationships while choos-
ing a map representation:

• The precision of the map must appropriately match
the precision with which the robot needs to achieve its
goal.

• The precision of the map and the type of features rep-
resented must match the precision and data types re-
turned by the robot’s sensors.

• The complexity of the map representation has direct
impact on the computational complexity of reasoning
about mapping, localization and navigation.

Therefore its important to design the map representation
according to the capabilities of the localization and navi-
gation. For each entity in the graph which include nodes
and edges, we have to define how can we know if a robot
has reached this node or edge (localization) and the actions
which can be performed in this node or edge (included navi-
gation). Each node in a low level topological map can repre-
sent a 3D point or a camera pose which are connected by the
edges if the camera sees the 3D point and in a higher level
topological map each node can represent a concept like a
room or a collection of rooms and an edge can represent a
path connecting those nodes. One important characteristics
to think about while deciding between what to represent as
nodes and what to represent as edges is to find the ease to lo-
calize in a certain node and the ease to navigate in a certain
edge. If a place in the 3D scene has higher distinctiveness
than its surrounding then we can create a node representing
that location and the edges should connect all such places
using easily navigable paths. Table 1 summarizes the char-
acteristics of nodes and edges in a topological map.

We propose a hybrid representation to specify each node
and edge. Accordingly each node and edge can be repre-
sented either using a metric map or a semantic map de-
pending upon the robot’s capability to understand it. The

Nodes Edges
Localization Easy to localize Don’t Care
Navigation Don’t Care Easy to Navigate

Table 1. Characteristics of nodes and edges in a topological map

decision to choose between higher and lower level repre-
sentations for each node and edge can vary across different
regions. For example, it is better to have a apperance based
representation (bag of visual words) for a cluttered room
than to fit a 3D layout which can be more difficult. However
it might be easier to use a line based representation for par-
ticularly feature less regions like corridors connecting dif-
ferent rooms. The size of the map can depend on the level
of abstraction we use to represent a particular node. This di-
rectly translates to robot’s cognition ability to localize and
navigate through that node. Figure 3 depicts the increase
in the size of the map with the level of abstraction in the
map and the corresponding decrease in the cognition ability
to localize in it. Higher cognition ability requires a better
behavior based navigation strategy to better understand the
local environment and navigate from one node to the other.
In regions where it is tough to localize in the global map, we
rely on local behavior based navigation to move from one
place to another. In another way, intentionally not localizing
in certain regions and relying on behavior based navigation
can help reduce the size of the map.

6.2. Localization

Robot’s localization and the reference system according
to Benjamin Kuiper [16] can have the following character-
istics:

• Position is often given as a relation between two places
and a reference system, not an absolute property of a
single place.

• There are many reference sytems with respect to which
positions may be defined.

• The relation between different reference systems may
be unknown.

• Many people orient themselves with respect to con-
spicuous landmarks.

• A reference system need not be tied to a large geo-
graphical structure like a mountain or a set of grid-
structured streets. It may be created to represent the
locations of a small set of nearby but mutually invis-
ible places, whose positions are computed by dead-
reckoning along short routes

Initially we’ll consider the case of global localization
where we continuously localize against a global map us-
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Figure 3. Map Representation: Increase in the size of the map corresponds to decrease in the cognition capability of the robot and vice
versa

ing landmarks. This can be followed by fusing information
from dead-reckoning and

6.3. Navigation

To find a proper balance between Behavior/Affordance
based navigation and Map based navigation can lead to
a minimal representation for a robot. Initially we can
start without using any behavior/affordance based naviga-
tion and using only map based navigation to find how much
can we reduce the map without losing the accuracy of map
based navigation. After this we can further adaptively re-
duce the map in some regions where behavior based navi-
gation works fine and use map based navigation for the rest
of the regions.

6.4. Plan

The plan for this problem can be something like this.

• First stage: Find minimal representation of a map to
continuously localize in the environment and navigate
using map based navigation

• Second stage: Find minimal representation to localize
in the nodes using map based navigation and navigate
along the edges using behavior based navigation.
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