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Cooperative estimation of 3D robot trajectories from relative pose 
measurements, with the following constraints: 

1. Communication only occurs during rendezvous. 

2. Data exchange must be minimal (due to limited bandwidth and privacy). 

3. Memory required by each robot is minimal. 
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Using objects as landmarks in a distributed SLAM framework 
and leveraging a state of art distributed optimizer  both reduce  
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robot, outputs a human understandable map and improves the 

robustness and scalability of distributed SLAM.

Thesis Statement

20



Thesis Statement

reduce  the communication bandwidth and the memory
outputs a human understandable map

improves the robustness and scalability

Using objects as landmarks
state of art distributed optimizer

distributed SLAM

21



Thesis Statement

reduce  the communication bandwidth and the memory

outputs a human understandable map

improves the robustness and scalability

Using objects as landmarks

state of art distributed optimizer

distributed SLAM

1.

2.

3.

+

21



Outline

1. Distributed Gauss-Seidel Approach                                                                
(state of art distributed optimizer) 

2. Distributed Object-based SLAM with Known Object Models                    
(using objects as landmarks) 

3. Distributed Object-based SLAM with Joint Object Modeling and Mapping                     
(jointly model objects along with SLAM)  

4. Conclusions and Future Work

22



Outline

23

1. Distributed Gauss-Seidel Approach                                                                
(state of art distributed optimizer) 

2. Distributed Object-based SLAM with Known Object Models                    
(using objects as landmarks) 

3. Distributed Object-based SLAM with Joint Object Modeling and Mapping                     
(jointly model objects along with SLAM)  

4. Conclusions and Future Work



Distributed Trajectory Estimation

24



Distributed Trajectory Estimation
• Roumeliotis and Bekey (TRO 2002) 
• Thrun and Liu (ISRR 2003) 
• A. Howard (IJRR 2006) 
• Carlone et al. (JIRS 2011)

Distributed Filtering

x0 x1 x2

u0 u1

z1 z2

m

Fig. 1. Bayes net for single-robot SLAM. The robot trajectory is indicated
by the sequence x0, x1, x2, x3..., observations by the sequence z1, z2, ...,
and actions by the sequence u0, u1, ....

a mathematical formalism for the single robot case, then
extend (and approximate) the formalism to handle multi-robot
SLAM. This extended formalism provides the basis for the
on-line SLAM algorithm presented in Section II-D.

A. Single-robot SLAM
The SLAM problem for a single robot is treated as follows.

Let x1:t denote a sequence of robot poses at times 1, 2, ...t, let
z1:t denote a corresponding sequence of observations, and let
u0:t−1 denote the sequence of actions executed by the robot.
Our (intermediate) aim is to compute the posterior probability
p(x1:t,m | z1:t, u0:t−1, x0) over the robot trajectory x1:t and
map m, given some initial pose x0. We write this as the
product of two factors:

p(x1:t,m | z1:t, u0:t−1, x0) =

p(m | x1:t, z1:t, u0:t−1, x0)p(x1:t | z1:t, u0:t−1, x0)
(1)

where the first term is a distribution over possible maps and the
second is a distribution over possible trajectories. The utility
of this expression lies in the fact that the first term can be
computed analytically once the robot trajectory x1:t is known.
Thus, we may approximate the posterior over trajectories and
maps using a particle filter in which each sample represents a
complete robot trajectory, and a separate map is conditioned
on each such sample.
Exploiting the conditional dependencies inherent in the

single-robot SLAM problem (see Figure 1), we construct the
Rao-Blackwellized particle filter as follows. Let each particle
(i) be a tuple ⟨x(i)

t ,m
(i)
t , w

(i)
t ⟩ such that x

(i)
t is the robot

pose at time t, m
(i)
t is the map generated using observations

recorded up to and including time t, and w
(i)
t is the particle

weight. Given some action/observation pair (ut−1, zt), the
filter is updated using:

x
(i)
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(i)
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where A, S and M are the action, sensor and map models,
respectively. More specifically: A is an action model that
returns a random pose drawn from the distribution p(x(i)
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Fig. 2. Bayes net for multi-robot SLAM with known initial poses. The
trajectories of robots 1 and 2 are indicated by the sequences x1

0
, x1

1
, x1

2
, ...

and x2
0
, x2

1
, x2

2
, ..., respectively. We ignore the dependencies (dashed-lines)

between the observations z2 made by robot 2 and the pose x1 of robot 1
(and vice versa).

x
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t−1, ut−1); S is the sensor model p(zt | x

(i)
t ,m

(i)
t−1); and

M is an incremental map generator that returns a partial
occupancy grid (expressed in log-likelihood form to allow for
linear superposition of grids). The basic intuition captured in
these equations is that particles with self-consistent maps will
be assigned larger weights than particles with inconsistent
maps, and that the latter will ultimately be removed by
resampling.
This approach has some valuable practical characteristics.

It is a bounded-time, bounded-storage algorithm, in which
processing effort and storage requirements scale linearly with
particle count, but are independent of the elapsed time t. It is
also very easy to implement: the sensor model S and action
model A are identical to those used in the standard Monte-
Carlo localization algorithm [8], and the map generator M is
a simple ray-tracing algorithm. The approach does have one
crucial limitation, however: the state space is extremely large
(with hundreds or thousands of dimensions), while the number
of particles is necessarily small (a few hundred to a few
thousand at most). Thus, the filter is a very sparse sampling of
the state space, and convergence is far from guaranteed; this
under-sampling typically manifests itself during loop closure,
when we may find that none of the particles generates a self-
consistent map. In order to make this approach mananageable,
one requires either very good action models [1] or very good
proposal distributions [7]. In this paper, we adopt the former
approach, combining odometry with laser data to produce
“stabilized” odometric pose estimates (see Section III-A).

B. Multi-robot SLAM with known initial poses

The single-robot SLAM formalism can readily be general-
ized to handle multiple robots, provided that the initial robot
poses are known. Consider a pair of robots, whose obser-
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DDF-SAM 2.0: Consistent Distributed Smoothing and Mapping

Alexander Cunningham, Vadim Indelman and Frank Dellaert

Abstract— This paper presents an consistent decentralized

data fusion approach for robust multi-robot SLAM in dan-

gerous, unknown environments. The DDF-SAM 2.0 approach

extends our previous work by combining local and neigh-

borhood information in a single, consistent augmented local

map, without the overly conservative approach to avoiding

information double-counting in the previous DDF-SAM algo-

rithm. We introduce the anti-factor as a means to subtract

information in graphical SLAM systems, and illustrate its use

to both replace information in an incremental solver and to

cancel out neighborhood information from shared summarized

maps. This paper presents and compares three summarization

techniques, with two exact approaches and an approximation.

We evaluated the proposed system in a synthetic example

and show the augmented local system and the associated

summarization technique do not double-count information,

while keeping performance tractable.

I. INTRODUCTION

A key enabling technology for robust multi-robot teams
capable of operation in challenging environments is a percep-
tion system capable of fusing information in a decentralized
manner. The SLAM community has produced substantial
improvements in the quality of robot mapping techniques,
enabling efficient, real-time mapping using a variety of
sensors in single-robot cases. This paper addresses the appli-
cation of these state-of-the-art SLAM techniques to fleets of
small, cheap robots to enable robust multi-robot perception,
extending the sensor horizon of any individual robot. Fig. 1
shows a simple three-robot mapping scenario with commonly
observed map landmarks motivating this approach.

In our previous work on decentralized robot perception
[1], [2], we introduced DDF-SAM (denoted as DDF-SAM
1.0 in this paper), a SLAM paradigm extending Smoothing
and Mapping (SAM) [3] techniques to the Decentralized
Data Fusion (DDF) problem [4] by robots performing local
SLAM and sharing a subset of map variables with neighbors
in the form of summarized maps. The key component of
the approach is the sharing of summarized densities between
robots, allowing for application-specific choices of transmit-
ted information that users can throttle to match the available
communication bandwidth between platforms.

However, DDF-SAM 1.0 has two key shortcomings: 1)
an overly conservative approach for avoiding information
double-counting, and 2) reliance on a batch marginalization
approach for map summarization. The method employed
for avoiding information double-counting enforced a strict

Authors are with the Georgia Institute of Technology,
Atlanta, GA contactable at acunning, indelman,
frank@cc.gatech.edu. This work was partially funded through
the Micro Autonomous Systems and Technology (MAST) Alliance, with
sponsorship from Army Research Labs (ARL).

Fig. 1. Example multi-robot SLAM scenario, showing three robots observ-
ing landmarks (stars), with some landmarks in common. Also illustrated is
factor graph with measurements (edges with filled black circles) and the
trajectory for each platform.

separation between a robot’s local map and it’s neighbor-
hood map comprised of data from neighboring robots -
an approach that avoids double-counting at the expense of
each robot maintaining two separate, but incomplete maps
of its environment. Furthermore, the batch summarization
technique used to marginalize non-shared variables from the
local map performs a computationally expensive and separate
factorization of the entire local system, which increases in
complexity over time and limits scalability. We examine
alternate approaches for summarization, as well as the impact
these approaches have on performance in the full system.

To address these shortcomings, we introduce DDF-SAM
2.0 with the following contributions towards effective de-
centralized perception: 1) the augmented local system as a
replacement for the separate local and neighborhood maps
maintained in DDF-SAM 1.0 to provide a single, consistent
map on each robot blending local and neighborhood informa-
tion, 2) the anti-factor as a tool to avoid double-counting of
neighborhood information by down-dating estimates, and 3)
the derivation and evaluation of three summarization tech-
niques applicable to incremental solving techniques, using
both exact marginalization and approximations.

II. RELATED WORK

While this paper focuses on a graphical-model formulation
of the multi-robot SLAM problem, there is a long history of
related work in distributed inference. As is common through-
out much of the mapping and estimation community, many
techniques employ filtering approaches to perform inference.
Roumeliotis et al. [5] consider an extended Kalman filter
(EKF) framework and perform a decentralized calculation
of the augmented covariance matrix between all the robots
in the group assuming relative pose measurements. Nerurkar

• Roumeliotis and Bekey (TRO 2002) 
• Thrun and Liu (ISRR 2003) 
• A. Howard (IJRR 2006) 
• Carlone et al. (JIRS 2011)
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a mathematical formalism for the single robot case, then
extend (and approximate) the formalism to handle multi-robot
SLAM. This extended formalism provides the basis for the
on-line SLAM algorithm presented in Section II-D.

A. Single-robot SLAM
The SLAM problem for a single robot is treated as follows.

Let x1:t denote a sequence of robot poses at times 1, 2, ...t, let
z1:t denote a corresponding sequence of observations, and let
u0:t−1 denote the sequence of actions executed by the robot.
Our (intermediate) aim is to compute the posterior probability
p(x1:t,m | z1:t, u0:t−1, x0) over the robot trajectory x1:t and
map m, given some initial pose x0. We write this as the
product of two factors:

p(x1:t,m | z1:t, u0:t−1, x0) =

p(m | x1:t, z1:t, u0:t−1, x0)p(x1:t | z1:t, u0:t−1, x0)
(1)

where the first term is a distribution over possible maps and the
second is a distribution over possible trajectories. The utility
of this expression lies in the fact that the first term can be
computed analytically once the robot trajectory x1:t is known.
Thus, we may approximate the posterior over trajectories and
maps using a particle filter in which each sample represents a
complete robot trajectory, and a separate map is conditioned
on each such sample.
Exploiting the conditional dependencies inherent in the

single-robot SLAM problem (see Figure 1), we construct the
Rao-Blackwellized particle filter as follows. Let each particle
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returns a random pose drawn from the distribution p(x(i)
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M is an incremental map generator that returns a partial
occupancy grid (expressed in log-likelihood form to allow for
linear superposition of grids). The basic intuition captured in
these equations is that particles with self-consistent maps will
be assigned larger weights than particles with inconsistent
maps, and that the latter will ultimately be removed by
resampling.
This approach has some valuable practical characteristics.

It is a bounded-time, bounded-storage algorithm, in which
processing effort and storage requirements scale linearly with
particle count, but are independent of the elapsed time t. It is
also very easy to implement: the sensor model S and action
model A are identical to those used in the standard Monte-
Carlo localization algorithm [8], and the map generator M is
a simple ray-tracing algorithm. The approach does have one
crucial limitation, however: the state space is extremely large
(with hundreds or thousands of dimensions), while the number
of particles is necessarily small (a few hundred to a few
thousand at most). Thus, the filter is a very sparse sampling of
the state space, and convergence is far from guaranteed; this
under-sampling typically manifests itself during loop closure,
when we may find that none of the particles generates a self-
consistent map. In order to make this approach mananageable,
one requires either very good action models [1] or very good
proposal distributions [7]. In this paper, we adopt the former
approach, combining odometry with laser data to produce
“stabilized” odometric pose estimates (see Section III-A).

B. Multi-robot SLAM with known initial poses

The single-robot SLAM formalism can readily be general-
ized to handle multiple robots, provided that the initial robot
poses are known. Consider a pair of robots, whose obser-
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A key enabling technology for robust multi-robot teams
capable of operation in challenging environments is a percep-
tion system capable of fusing information in a decentralized
manner. The SLAM community has produced substantial
improvements in the quality of robot mapping techniques,
enabling efficient, real-time mapping using a variety of
sensors in single-robot cases. This paper addresses the appli-
cation of these state-of-the-art SLAM techniques to fleets of
small, cheap robots to enable robust multi-robot perception,
extending the sensor horizon of any individual robot. Fig. 1
shows a simple three-robot mapping scenario with commonly
observed map landmarks motivating this approach.

In our previous work on decentralized robot perception
[1], [2], we introduced DDF-SAM (denoted as DDF-SAM
1.0 in this paper), a SLAM paradigm extending Smoothing
and Mapping (SAM) [3] techniques to the Decentralized
Data Fusion (DDF) problem [4] by robots performing local
SLAM and sharing a subset of map variables with neighbors
in the form of summarized maps. The key component of
the approach is the sharing of summarized densities between
robots, allowing for application-specific choices of transmit-
ted information that users can throttle to match the available
communication bandwidth between platforms.

However, DDF-SAM 1.0 has two key shortcomings: 1)
an overly conservative approach for avoiding information
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separation between a robot’s local map and it’s neighbor-
hood map comprised of data from neighboring robots -
an approach that avoids double-counting at the expense of
each robot maintaining two separate, but incomplete maps
of its environment. Furthermore, the batch summarization
technique used to marginalize non-shared variables from the
local map performs a computationally expensive and separate
factorization of the entire local system, which increases in
complexity over time and limits scalability. We examine
alternate approaches for summarization, as well as the impact
these approaches have on performance in the full system.

To address these shortcomings, we introduce DDF-SAM
2.0 with the following contributions towards effective de-
centralized perception: 1) the augmented local system as a
replacement for the separate local and neighborhood maps
maintained in DDF-SAM 1.0 to provide a single, consistent
map on each robot blending local and neighborhood informa-
tion, 2) the anti-factor as a tool to avoid double-counting of
neighborhood information by down-dating estimates, and 3)
the derivation and evaluation of three summarization tech-
niques applicable to incremental solving techniques, using
both exact marginalization and approximations.

II. RELATED WORK

While this paper focuses on a graphical-model formulation
of the multi-robot SLAM problem, there is a long history of
related work in distributed inference. As is common through-
out much of the mapping and estimation community, many
techniques employ filtering approaches to perform inference.
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a mathematical formalism for the single robot case, then
extend (and approximate) the formalism to handle multi-robot
SLAM. This extended formalism provides the basis for the
on-line SLAM algorithm presented in Section II-D.

A. Single-robot SLAM
The SLAM problem for a single robot is treated as follows.

Let x1:t denote a sequence of robot poses at times 1, 2, ...t, let
z1:t denote a corresponding sequence of observations, and let
u0:t−1 denote the sequence of actions executed by the robot.
Our (intermediate) aim is to compute the posterior probability
p(x1:t,m | z1:t, u0:t−1, x0) over the robot trajectory x1:t and
map m, given some initial pose x0. We write this as the
product of two factors:

p(x1:t,m | z1:t, u0:t−1, x0) =

p(m | x1:t, z1:t, u0:t−1, x0)p(x1:t | z1:t, u0:t−1, x0)
(1)

where the first term is a distribution over possible maps and the
second is a distribution over possible trajectories. The utility
of this expression lies in the fact that the first term can be
computed analytically once the robot trajectory x1:t is known.
Thus, we may approximate the posterior over trajectories and
maps using a particle filter in which each sample represents a
complete robot trajectory, and a separate map is conditioned
on each such sample.
Exploiting the conditional dependencies inherent in the

single-robot SLAM problem (see Figure 1), we construct the
Rao-Blackwellized particle filter as follows. Let each particle
(i) be a tuple ⟨x(i)

t ,m
(i)
t , w

(i)
t ⟩ such that x

(i)
t is the robot

pose at time t, m
(i)
t is the map generated using observations

recorded up to and including time t, and w
(i)
t is the particle

weight. Given some action/observation pair (ut−1, zt), the
filter is updated using:

x
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where A, S and M are the action, sensor and map models,
respectively. More specifically: A is an action model that
returns a random pose drawn from the distribution p(x(i)

t |

x1
0 x1

1 x1
2

u1
0 u1

1

z1
1 z1

2

m

x2
0 x2

1 x2
2

u2
0 u2

1

z2
1

z2
2

Fig. 2. Bayes net for multi-robot SLAM with known initial poses. The
trajectories of robots 1 and 2 are indicated by the sequences x1

0
, x1

1
, x1

2
, ...

and x2
0
, x2

1
, x2

2
, ..., respectively. We ignore the dependencies (dashed-lines)

between the observations z2 made by robot 2 and the pose x1 of robot 1
(and vice versa).

x
(i)
t−1, ut−1); S is the sensor model p(zt | x

(i)
t ,m

(i)
t−1); and

M is an incremental map generator that returns a partial
occupancy grid (expressed in log-likelihood form to allow for
linear superposition of grids). The basic intuition captured in
these equations is that particles with self-consistent maps will
be assigned larger weights than particles with inconsistent
maps, and that the latter will ultimately be removed by
resampling.
This approach has some valuable practical characteristics.

It is a bounded-time, bounded-storage algorithm, in which
processing effort and storage requirements scale linearly with
particle count, but are independent of the elapsed time t. It is
also very easy to implement: the sensor model S and action
model A are identical to those used in the standard Monte-
Carlo localization algorithm [8], and the map generator M is
a simple ray-tracing algorithm. The approach does have one
crucial limitation, however: the state space is extremely large
(with hundreds or thousands of dimensions), while the number
of particles is necessarily small (a few hundred to a few
thousand at most). Thus, the filter is a very sparse sampling of
the state space, and convergence is far from guaranteed; this
under-sampling typically manifests itself during loop closure,
when we may find that none of the particles generates a self-
consistent map. In order to make this approach mananageable,
one requires either very good action models [1] or very good
proposal distributions [7]. In this paper, we adopt the former
approach, combining odometry with laser data to produce
“stabilized” odometric pose estimates (see Section III-A).

B. Multi-robot SLAM with known initial poses

The single-robot SLAM formalism can readily be general-
ized to handle multiple robots, provided that the initial robot
poses are known. Consider a pair of robots, whose obser-
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Fig. 4. The factor graph in Figure 2 is partitioned into the two submaps.
Each submap is indicated by a colored rectangle boundary.

Fig. 5. The block structure of the Jacobian in Figure 3 with rows ordered
according to the measurement types and the submap indices. From top to
bottom, the shaded areas represent Z1, Z2, and Z1,2.

vertical cut to our example problem to generate two submaps
M1 and M2.

We categorize measurements as either intra-measurements
Z

p

or inter-measurements Z
p,q

. Intra-measurements Z
p

are the set of measurements that involve only the
nodes in submap M

p

, and the inter-measurements are
the set Z

p,q

that have dependencies on both M
p

and
M

q

. In Figure 4, the inter-measurements are Z1,2 =
{u

x1,x2 , zx1,l5 , zx1,l6 , zx2,l3 , zx2,l4}, and all other measure-
ments make up the intra-measurements Z1 and Z2. The intra-
measurements are iteratively relinearized when aligning the
submaps locally. The linearization of the intra-measurements
is then fixed when optimizing the separator, and only the
inter-measurements are linearized during each iteration.

From a matrix point of view, the rows of the block-
structure A0 can be ordered in a way such that Z1 and Z2

(rows 1 to 14 in Figure 5) are placed above Z1,2 (rows 15 to
19). As we are going to optimize the submaps one by one, the
intra-measurements (rows 1 to 14) are internally ordered with
respect to their submap indices p, e.g., first Z1 (red-shaded
area) and then Z2 (blue-shaded area).

We also define boundary variables and non-boundary
variables with respect to the roles that variables play in the
measurements. Variables are boundary if they are involved in

Fig. 6. The subsystems in two submaps. Their columns Vp and Sp are
ordered by AMD and covered by red and blue shading.

at least one inter-measurement and non-boundary otherwise.
Thus, each submap M

p

is made up of two sets: a non-
boundary variable set V

p

and a boundary variable set S
p

,
such that

M
p

= V
p

[ S
p

(6)

In Figure 4, we have V1 = {x0; l1; l2}, V2 = {x3; l7; l8},
S1 = {x1; l3; l4}, and S2 = {x2; l5; l6}.

B. Submap Optimization

Each submap M
p

can be optimized locally and indepen-
dently only using intra-measurements. The optimization of
every single submap is simply a small-scale

p
SAM problem

which can be written as

A
p

�M
p

= c
p

(7)

where A
p

and c
p

are corresponding parts of A and c in
Equation 5 and contain the columns only involved in Z

p

.
In order to allow re-use of the linearization point of the

intra-measurements, the columns of A
p

corresponding to the
boundary variables are ordered last, as follows:
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As always, choosing a good column ordering is important, es-
pecially if the submaps contain many variables. As discussed
in Section II, we use AMD to obtain a good ordering of both
V

p

and S
p

. The block-structure of the re-ordered matrices A
p

in Equation 7 are shown in Figure 6.
Note that after computing the Hessian and its Cholesky

factorization, the system of equations being solved is
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Since the separating set variables correspond to the lower
right block of the Cholesky factor, the system of equations
involving only variables in the boundary variable set can be
extracted trivially for later use in the separator optimization:
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DDF-SAM 2.0: Consistent Distributed Smoothing and Mapping

Alexander Cunningham, Vadim Indelman and Frank Dellaert

Abstract— This paper presents an consistent decentralized

data fusion approach for robust multi-robot SLAM in dan-

gerous, unknown environments. The DDF-SAM 2.0 approach

extends our previous work by combining local and neigh-

borhood information in a single, consistent augmented local

map, without the overly conservative approach to avoiding

information double-counting in the previous DDF-SAM algo-

rithm. We introduce the anti-factor as a means to subtract

information in graphical SLAM systems, and illustrate its use

to both replace information in an incremental solver and to

cancel out neighborhood information from shared summarized

maps. This paper presents and compares three summarization

techniques, with two exact approaches and an approximation.

We evaluated the proposed system in a synthetic example

and show the augmented local system and the associated

summarization technique do not double-count information,

while keeping performance tractable.

I. INTRODUCTION

A key enabling technology for robust multi-robot teams
capable of operation in challenging environments is a percep-
tion system capable of fusing information in a decentralized
manner. The SLAM community has produced substantial
improvements in the quality of robot mapping techniques,
enabling efficient, real-time mapping using a variety of
sensors in single-robot cases. This paper addresses the appli-
cation of these state-of-the-art SLAM techniques to fleets of
small, cheap robots to enable robust multi-robot perception,
extending the sensor horizon of any individual robot. Fig. 1
shows a simple three-robot mapping scenario with commonly
observed map landmarks motivating this approach.

In our previous work on decentralized robot perception
[1], [2], we introduced DDF-SAM (denoted as DDF-SAM
1.0 in this paper), a SLAM paradigm extending Smoothing
and Mapping (SAM) [3] techniques to the Decentralized
Data Fusion (DDF) problem [4] by robots performing local
SLAM and sharing a subset of map variables with neighbors
in the form of summarized maps. The key component of
the approach is the sharing of summarized densities between
robots, allowing for application-specific choices of transmit-
ted information that users can throttle to match the available
communication bandwidth between platforms.

However, DDF-SAM 1.0 has two key shortcomings: 1)
an overly conservative approach for avoiding information
double-counting, and 2) reliance on a batch marginalization
approach for map summarization. The method employed
for avoiding information double-counting enforced a strict
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Fig. 1. Example multi-robot SLAM scenario, showing three robots observ-
ing landmarks (stars), with some landmarks in common. Also illustrated is
factor graph with measurements (edges with filled black circles) and the
trajectory for each platform.

separation between a robot’s local map and it’s neighbor-
hood map comprised of data from neighboring robots -
an approach that avoids double-counting at the expense of
each robot maintaining two separate, but incomplete maps
of its environment. Furthermore, the batch summarization
technique used to marginalize non-shared variables from the
local map performs a computationally expensive and separate
factorization of the entire local system, which increases in
complexity over time and limits scalability. We examine
alternate approaches for summarization, as well as the impact
these approaches have on performance in the full system.

To address these shortcomings, we introduce DDF-SAM
2.0 with the following contributions towards effective de-
centralized perception: 1) the augmented local system as a
replacement for the separate local and neighborhood maps
maintained in DDF-SAM 1.0 to provide a single, consistent
map on each robot blending local and neighborhood informa-
tion, 2) the anti-factor as a tool to avoid double-counting of
neighborhood information by down-dating estimates, and 3)
the derivation and evaluation of three summarization tech-
niques applicable to incremental solving techniques, using
both exact marginalization and approximations.

II. RELATED WORK

While this paper focuses on a graphical-model formulation
of the multi-robot SLAM problem, there is a long history of
related work in distributed inference. As is common through-
out much of the mapping and estimation community, many
techniques employ filtering approaches to perform inference.
Roumeliotis et al. [5] consider an extended Kalman filter
(EKF) framework and perform a decentralized calculation
of the augmented covariance matrix between all the robots
in the group assuming relative pose measurements. Nerurkar
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Fig. 1. Bayes net for single-robot SLAM. The robot trajectory is indicated
by the sequence x0, x1, x2, x3..., observations by the sequence z1, z2, ...,
and actions by the sequence u0, u1, ....

a mathematical formalism for the single robot case, then
extend (and approximate) the formalism to handle multi-robot
SLAM. This extended formalism provides the basis for the
on-line SLAM algorithm presented in Section II-D.

A. Single-robot SLAM
The SLAM problem for a single robot is treated as follows.

Let x1:t denote a sequence of robot poses at times 1, 2, ...t, let
z1:t denote a corresponding sequence of observations, and let
u0:t−1 denote the sequence of actions executed by the robot.
Our (intermediate) aim is to compute the posterior probability
p(x1:t,m | z1:t, u0:t−1, x0) over the robot trajectory x1:t and
map m, given some initial pose x0. We write this as the
product of two factors:

p(x1:t,m | z1:t, u0:t−1, x0) =

p(m | x1:t, z1:t, u0:t−1, x0)p(x1:t | z1:t, u0:t−1, x0)
(1)

where the first term is a distribution over possible maps and the
second is a distribution over possible trajectories. The utility
of this expression lies in the fact that the first term can be
computed analytically once the robot trajectory x1:t is known.
Thus, we may approximate the posterior over trajectories and
maps using a particle filter in which each sample represents a
complete robot trajectory, and a separate map is conditioned
on each such sample.
Exploiting the conditional dependencies inherent in the

single-robot SLAM problem (see Figure 1), we construct the
Rao-Blackwellized particle filter as follows. Let each particle
(i) be a tuple ⟨x(i)

t ,m
(i)
t , w

(i)
t ⟩ such that x

(i)
t is the robot

pose at time t, m
(i)
t is the map generated using observations

recorded up to and including time t, and w
(i)
t is the particle

weight. Given some action/observation pair (ut−1, zt), the
filter is updated using:
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where A, S and M are the action, sensor and map models,
respectively. More specifically: A is an action model that
returns a random pose drawn from the distribution p(x(i)

t |

x1
0 x1

1 x1
2

u1
0 u1

1

z1
1 z1

2

m

x2
0 x2

1 x2
2

u2
0 u2

1

z2
1

z2
2

Fig. 2. Bayes net for multi-robot SLAM with known initial poses. The
trajectories of robots 1 and 2 are indicated by the sequences x1

0
, x1

1
, x1

2
, ...

and x2
0
, x2

1
, x2

2
, ..., respectively. We ignore the dependencies (dashed-lines)

between the observations z2 made by robot 2 and the pose x1 of robot 1
(and vice versa).

x
(i)
t−1, ut−1); S is the sensor model p(zt | x

(i)
t ,m

(i)
t−1); and

M is an incremental map generator that returns a partial
occupancy grid (expressed in log-likelihood form to allow for
linear superposition of grids). The basic intuition captured in
these equations is that particles with self-consistent maps will
be assigned larger weights than particles with inconsistent
maps, and that the latter will ultimately be removed by
resampling.
This approach has some valuable practical characteristics.

It is a bounded-time, bounded-storage algorithm, in which
processing effort and storage requirements scale linearly with
particle count, but are independent of the elapsed time t. It is
also very easy to implement: the sensor model S and action
model A are identical to those used in the standard Monte-
Carlo localization algorithm [8], and the map generator M is
a simple ray-tracing algorithm. The approach does have one
crucial limitation, however: the state space is extremely large
(with hundreds or thousands of dimensions), while the number
of particles is necessarily small (a few hundred to a few
thousand at most). Thus, the filter is a very sparse sampling of
the state space, and convergence is far from guaranteed; this
under-sampling typically manifests itself during loop closure,
when we may find that none of the particles generates a self-
consistent map. In order to make this approach mananageable,
one requires either very good action models [1] or very good
proposal distributions [7]. In this paper, we adopt the former
approach, combining odometry with laser data to produce
“stabilized” odometric pose estimates (see Section III-A).

B. Multi-robot SLAM with known initial poses

The single-robot SLAM formalism can readily be general-
ized to handle multiple robots, provided that the initial robot
poses are known. Consider a pair of robots, whose obser-
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Fig. 4. The factor graph in Figure 2 is partitioned into the two submaps.
Each submap is indicated by a colored rectangle boundary.

Fig. 5. The block structure of the Jacobian in Figure 3 with rows ordered
according to the measurement types and the submap indices. From top to
bottom, the shaded areas represent Z1, Z2, and Z1,2.

vertical cut to our example problem to generate two submaps
M1 and M2.

We categorize measurements as either intra-measurements
Z

p

or inter-measurements Z
p,q

. Intra-measurements Z
p

are the set of measurements that involve only the
nodes in submap M

p

, and the inter-measurements are
the set Z

p,q

that have dependencies on both M
p

and
M

q

. In Figure 4, the inter-measurements are Z1,2 =
{u

x1,x2 , zx1,l5 , zx1,l6 , zx2,l3 , zx2,l4}, and all other measure-
ments make up the intra-measurements Z1 and Z2. The intra-
measurements are iteratively relinearized when aligning the
submaps locally. The linearization of the intra-measurements
is then fixed when optimizing the separator, and only the
inter-measurements are linearized during each iteration.

From a matrix point of view, the rows of the block-
structure A0 can be ordered in a way such that Z1 and Z2

(rows 1 to 14 in Figure 5) are placed above Z1,2 (rows 15 to
19). As we are going to optimize the submaps one by one, the
intra-measurements (rows 1 to 14) are internally ordered with
respect to their submap indices p, e.g., first Z1 (red-shaded
area) and then Z2 (blue-shaded area).

We also define boundary variables and non-boundary
variables with respect to the roles that variables play in the
measurements. Variables are boundary if they are involved in

Fig. 6. The subsystems in two submaps. Their columns Vp and Sp are
ordered by AMD and covered by red and blue shading.

at least one inter-measurement and non-boundary otherwise.
Thus, each submap M

p

is made up of two sets: a non-
boundary variable set V

p

and a boundary variable set S
p

,
such that

M
p

= V
p

[ S
p

(6)

In Figure 4, we have V1 = {x0; l1; l2}, V2 = {x3; l7; l8},
S1 = {x1; l3; l4}, and S2 = {x2; l5; l6}.

B. Submap Optimization

Each submap M
p

can be optimized locally and indepen-
dently only using intra-measurements. The optimization of
every single submap is simply a small-scale

p
SAM problem

which can be written as

A
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where A
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and c
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are corresponding parts of A and c in
Equation 5 and contain the columns only involved in Z
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.
In order to allow re-use of the linearization point of the

intra-measurements, the columns of A
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corresponding to the
boundary variables are ordered last, as follows:
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As always, choosing a good column ordering is important, es-
pecially if the submaps contain many variables. As discussed
in Section II, we use AMD to obtain a good ordering of both
V

p

and S
p

. The block-structure of the re-ordered matrices A
p

in Equation 7 are shown in Figure 6.
Note that after computing the Hessian and its Cholesky
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Since the separating set variables correspond to the lower
right block of the Cholesky factor, the system of equations
involving only variables in the boundary variable set can be
extracted trivially for later use in the separator optimization:
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DDF-SAM 2.0: Consistent Distributed Smoothing and Mapping

Alexander Cunningham, Vadim Indelman and Frank Dellaert

Abstract— This paper presents an consistent decentralized

data fusion approach for robust multi-robot SLAM in dan-

gerous, unknown environments. The DDF-SAM 2.0 approach

extends our previous work by combining local and neigh-

borhood information in a single, consistent augmented local

map, without the overly conservative approach to avoiding

information double-counting in the previous DDF-SAM algo-

rithm. We introduce the anti-factor as a means to subtract

information in graphical SLAM systems, and illustrate its use

to both replace information in an incremental solver and to

cancel out neighborhood information from shared summarized

maps. This paper presents and compares three summarization

techniques, with two exact approaches and an approximation.

We evaluated the proposed system in a synthetic example

and show the augmented local system and the associated

summarization technique do not double-count information,

while keeping performance tractable.

I. INTRODUCTION

A key enabling technology for robust multi-robot teams
capable of operation in challenging environments is a percep-
tion system capable of fusing information in a decentralized
manner. The SLAM community has produced substantial
improvements in the quality of robot mapping techniques,
enabling efficient, real-time mapping using a variety of
sensors in single-robot cases. This paper addresses the appli-
cation of these state-of-the-art SLAM techniques to fleets of
small, cheap robots to enable robust multi-robot perception,
extending the sensor horizon of any individual robot. Fig. 1
shows a simple three-robot mapping scenario with commonly
observed map landmarks motivating this approach.

In our previous work on decentralized robot perception
[1], [2], we introduced DDF-SAM (denoted as DDF-SAM
1.0 in this paper), a SLAM paradigm extending Smoothing
and Mapping (SAM) [3] techniques to the Decentralized
Data Fusion (DDF) problem [4] by robots performing local
SLAM and sharing a subset of map variables with neighbors
in the form of summarized maps. The key component of
the approach is the sharing of summarized densities between
robots, allowing for application-specific choices of transmit-
ted information that users can throttle to match the available
communication bandwidth between platforms.

However, DDF-SAM 1.0 has two key shortcomings: 1)
an overly conservative approach for avoiding information
double-counting, and 2) reliance on a batch marginalization
approach for map summarization. The method employed
for avoiding information double-counting enforced a strict
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Fig. 1. Example multi-robot SLAM scenario, showing three robots observ-
ing landmarks (stars), with some landmarks in common. Also illustrated is
factor graph with measurements (edges with filled black circles) and the
trajectory for each platform.

separation between a robot’s local map and it’s neighbor-
hood map comprised of data from neighboring robots -
an approach that avoids double-counting at the expense of
each robot maintaining two separate, but incomplete maps
of its environment. Furthermore, the batch summarization
technique used to marginalize non-shared variables from the
local map performs a computationally expensive and separate
factorization of the entire local system, which increases in
complexity over time and limits scalability. We examine
alternate approaches for summarization, as well as the impact
these approaches have on performance in the full system.

To address these shortcomings, we introduce DDF-SAM
2.0 with the following contributions towards effective de-
centralized perception: 1) the augmented local system as a
replacement for the separate local and neighborhood maps
maintained in DDF-SAM 1.0 to provide a single, consistent
map on each robot blending local and neighborhood informa-
tion, 2) the anti-factor as a tool to avoid double-counting of
neighborhood information by down-dating estimates, and 3)
the derivation and evaluation of three summarization tech-
niques applicable to incremental solving techniques, using
both exact marginalization and approximations.

II. RELATED WORK

While this paper focuses on a graphical-model formulation
of the multi-robot SLAM problem, there is a long history of
related work in distributed inference. As is common through-
out much of the mapping and estimation community, many
techniques employ filtering approaches to perform inference.
Roumeliotis et al. [5] consider an extended Kalman filter
(EKF) framework and perform a decentralized calculation
of the augmented covariance matrix between all the robots
in the group assuming relative pose measurements. Nerurkar
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Fig. 1. Bayes net for single-robot SLAM. The robot trajectory is indicated
by the sequence x0, x1, x2, x3..., observations by the sequence z1, z2, ...,
and actions by the sequence u0, u1, ....

a mathematical formalism for the single robot case, then
extend (and approximate) the formalism to handle multi-robot
SLAM. This extended formalism provides the basis for the
on-line SLAM algorithm presented in Section II-D.

A. Single-robot SLAM
The SLAM problem for a single robot is treated as follows.

Let x1:t denote a sequence of robot poses at times 1, 2, ...t, let
z1:t denote a corresponding sequence of observations, and let
u0:t−1 denote the sequence of actions executed by the robot.
Our (intermediate) aim is to compute the posterior probability
p(x1:t,m | z1:t, u0:t−1, x0) over the robot trajectory x1:t and
map m, given some initial pose x0. We write this as the
product of two factors:

p(x1:t,m | z1:t, u0:t−1, x0) =

p(m | x1:t, z1:t, u0:t−1, x0)p(x1:t | z1:t, u0:t−1, x0)
(1)

where the first term is a distribution over possible maps and the
second is a distribution over possible trajectories. The utility
of this expression lies in the fact that the first term can be
computed analytically once the robot trajectory x1:t is known.
Thus, we may approximate the posterior over trajectories and
maps using a particle filter in which each sample represents a
complete robot trajectory, and a separate map is conditioned
on each such sample.
Exploiting the conditional dependencies inherent in the

single-robot SLAM problem (see Figure 1), we construct the
Rao-Blackwellized particle filter as follows. Let each particle
(i) be a tuple ⟨x(i)

t ,m
(i)
t , w

(i)
t ⟩ such that x

(i)
t is the robot

pose at time t, m
(i)
t is the map generated using observations

recorded up to and including time t, and w
(i)
t is the particle

weight. Given some action/observation pair (ut−1, zt), the
filter is updated using:

x
(i)
t = A(ut−1, x

(i)
t−1)

m
(i)
t = M(zt, x

(i)
t ) + m

(i)
t−1

w
(i)
t = S(zt, x

(i)
t ,m

(i)
t−1)w

(i)
t−1 (2)

where A, S and M are the action, sensor and map models,
respectively. More specifically: A is an action model that
returns a random pose drawn from the distribution p(x(i)

t |

x1
0 x1

1 x1
2

u1
0 u1

1

z1
1 z1

2

m

x2
0 x2

1 x2
2

u2
0 u2

1

z2
1

z2
2

Fig. 2. Bayes net for multi-robot SLAM with known initial poses. The
trajectories of robots 1 and 2 are indicated by the sequences x1

0
, x1

1
, x1

2
, ...

and x2
0
, x2

1
, x2

2
, ..., respectively. We ignore the dependencies (dashed-lines)

between the observations z2 made by robot 2 and the pose x1 of robot 1
(and vice versa).

x
(i)
t−1, ut−1); S is the sensor model p(zt | x

(i)
t ,m

(i)
t−1); and

M is an incremental map generator that returns a partial
occupancy grid (expressed in log-likelihood form to allow for
linear superposition of grids). The basic intuition captured in
these equations is that particles with self-consistent maps will
be assigned larger weights than particles with inconsistent
maps, and that the latter will ultimately be removed by
resampling.
This approach has some valuable practical characteristics.

It is a bounded-time, bounded-storage algorithm, in which
processing effort and storage requirements scale linearly with
particle count, but are independent of the elapsed time t. It is
also very easy to implement: the sensor model S and action
model A are identical to those used in the standard Monte-
Carlo localization algorithm [8], and the map generator M is
a simple ray-tracing algorithm. The approach does have one
crucial limitation, however: the state space is extremely large
(with hundreds or thousands of dimensions), while the number
of particles is necessarily small (a few hundred to a few
thousand at most). Thus, the filter is a very sparse sampling of
the state space, and convergence is far from guaranteed; this
under-sampling typically manifests itself during loop closure,
when we may find that none of the particles generates a self-
consistent map. In order to make this approach mananageable,
one requires either very good action models [1] or very good
proposal distributions [7]. In this paper, we adopt the former
approach, combining odometry with laser data to produce
“stabilized” odometric pose estimates (see Section III-A).

B. Multi-robot SLAM with known initial poses

The single-robot SLAM formalism can readily be general-
ized to handle multiple robots, provided that the initial robot
poses are known. Consider a pair of robots, whose obser-

• Anderson et al.  (SIAM Journal of Disc. Math. 2010) 
• Calafiore et al. (TSMC 2012) 
• Barooah and Hespanha (Control Systems Magazine 2007) 
• Aragues et al. (System and Control Letters 2012) 
• Thunberg et al. (CDC 2011) 
• Tron and Vidal (CDC 2009)
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• Ni et al. (ICRA 2007)

Submapping
l1

l2

l3

l4

l5

l6

l7

l8

x0 x1 x2 x3

Fig. 4. The factor graph in Figure 2 is partitioned into the two submaps.
Each submap is indicated by a colored rectangle boundary.

Fig. 5. The block structure of the Jacobian in Figure 3 with rows ordered
according to the measurement types and the submap indices. From top to
bottom, the shaded areas represent Z1, Z2, and Z1,2.

vertical cut to our example problem to generate two submaps
M1 and M2.

We categorize measurements as either intra-measurements
Z

p

or inter-measurements Z
p,q

. Intra-measurements Z
p

are the set of measurements that involve only the
nodes in submap M

p

, and the inter-measurements are
the set Z

p,q

that have dependencies on both M
p

and
M

q

. In Figure 4, the inter-measurements are Z1,2 =
{u

x1,x2 , zx1,l5 , zx1,l6 , zx2,l3 , zx2,l4}, and all other measure-
ments make up the intra-measurements Z1 and Z2. The intra-
measurements are iteratively relinearized when aligning the
submaps locally. The linearization of the intra-measurements
is then fixed when optimizing the separator, and only the
inter-measurements are linearized during each iteration.

From a matrix point of view, the rows of the block-
structure A0 can be ordered in a way such that Z1 and Z2

(rows 1 to 14 in Figure 5) are placed above Z1,2 (rows 15 to
19). As we are going to optimize the submaps one by one, the
intra-measurements (rows 1 to 14) are internally ordered with
respect to their submap indices p, e.g., first Z1 (red-shaded
area) and then Z2 (blue-shaded area).

We also define boundary variables and non-boundary
variables with respect to the roles that variables play in the
measurements. Variables are boundary if they are involved in

Fig. 6. The subsystems in two submaps. Their columns Vp and Sp are
ordered by AMD and covered by red and blue shading.

at least one inter-measurement and non-boundary otherwise.
Thus, each submap M

p

is made up of two sets: a non-
boundary variable set V

p

and a boundary variable set S
p

,
such that

M
p

= V
p

[ S
p

(6)

In Figure 4, we have V1 = {x0; l1; l2}, V2 = {x3; l7; l8},
S1 = {x1; l3; l4}, and S2 = {x2; l5; l6}.

B. Submap Optimization

Each submap M
p

can be optimized locally and indepen-
dently only using intra-measurements. The optimization of
every single submap is simply a small-scale

p
SAM problem

which can be written as

A
p

�M
p

= c
p

(7)

where A
p

and c
p

are corresponding parts of A and c in
Equation 5 and contain the columns only involved in Z

p

.
In order to allow re-use of the linearization point of the

intra-measurements, the columns of A
p

corresponding to the
boundary variables are ordered last, as follows:

⇥

A
Vp A

Sp

⇤



�V
p

�S
p

�

= c
p

(8)

As always, choosing a good column ordering is important, es-
pecially if the submaps contain many variables. As discussed
in Section II, we use AMD to obtain a good ordering of both
V

p

and S
p

. The block-structure of the re-ordered matrices A
p

in Equation 7 are shown in Figure 6.
Note that after computing the Hessian and its Cholesky

factorization, the system of equations being solved is


R
p

T
p

0 U
p

� 

�V
p

�S
p

�

=


d
p

d
Up

�

where
�

d
p

; d
Up

 

is obtained by solving


R
p

T
p

0 U
p

�

T



d
p

d
Up

�

= c
p

Since the separating set variables correspond to the lower
right block of the Cholesky factor, the system of equations
involving only variables in the boundary variable set can be
extracted trivially for later use in the separator optimization:

U
p

�S
p

= d
Up

The state of art in robotics requires communication cost 
quadratic in the number of communication links.

DDF-SAM: Fully distributed SLAM using constrained factor graphs 
Cunningham et al. (IROS 2010)
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we represent a smooth trajectory using a finite set of 3D poses
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Edges in the graph correspond to relative pose measurements between pairs of poses
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• Each phase requires solving a linear system 
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Initialization Techniques for 3D SLAM: a Survey on Rotation Estimation and its Use in Pose Graph Optimization 
Carlone et al. (ICRA 2015)
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Fig. 1. odometry
Fig. 2. optimum

Fig. 3. gtsam: Gauss Newton from odometry Fig. 4. g2o: Gauss Newton from odometry
Fig. 5. g2oST: Gauss Newton
from spanning tree initialization

Fig. 6. chord+gtsam: Gauss Newton (1 iter.)
from initialization (Martinec and Pajdla [1])

Fig. 7. chord+gtsam: Gauss Newton (multiple iter.)
from initialization (Martinec and Pajdla [1])

Fig. 8. grad+gtsam: Gauss Newton (1 iter.) from
initialization (Tron and Vidal [2])

Fig. 9. grad+gtsam: Gauss Newton (multiple
iter.) from initialization (Tron and Vidal [2])
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2. Given the rotations, recover full poses via a single Gauss-Newton iteration
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The Gauss-Seidel iterations converge to the centralized solution 
starting from any initial estimate

Guaranteed Convergence: 



We simulate different problems with robots moving along a 3D grid

Simulation Experiments

10

(a) Rotation Noise (b) Translation Noise
Fig. 15. Convergence for increasing levels of noise (scenario with 49
Robots). (a) Average rotation estimation error for �R = {1, 5, 10, 15, 20}�.
(b) Average pose estimation error for �t = {0.1, 0.3, 0.5, 0.8, 1.0}m.

(a) Exploration steps (b) Monte Carlo Runs
Fig. 16. (a) Number of exploration steps required to explore a fixed sized
grid with the increasing number of robots. (b) Shows the monte-carlo run
trajectories for Gazebo scenario.

(a) Initial (b) 10 iterations (c) 1000 iterations
Fig. 17. Trajectory estimates for the scenario with 49 robots. (a) Odometric
estimate (not used in our approach and only given for visualization purposes),
(b)-(c) DJ estimate after given number of iterations.

• (a) estimation error (wrt centralized) averaged over 100
Monte Carlo runs, for increasing noise level, for team of
2 robots

• (b) estimation error (wrt centralized) averaged over 100
Monte Carlo runs, for increasing noise level, for team of
4 robots

• 2 point clouds, one for indoor scenario, the other for
outdoor scenario

• amount of exchanged bytes for (a) and (b), compared
with DDF-SAM (other the comparison should be in the
real tests)

• BONUS: exploration time over 100 monte carlo runs for
increasing number of robots

Gazebo Simulations (Object based). we characterize the
performance of the proposed approach in terms of scalability
in the number of robots and sensitivity to noise. We test the
approach in two scenarios (a) 25 Chairs and (b) House,
which we simulated in Gazebo. In the 25 Chairs scenario,
we placed 25 chairs as objects on a grid, with each chair
placed at a random angle. In the House scenario, we placed
furniture as objects in order to simulate an indoor living room
environment. Fig. 22 shows the two scenarios. Unless specified
otherwise, we generate measurement noise from a zero-mean
Gaussian distribution with standard deviation �

R

= 5� for the

(a) (b)
Fig. 18. (a) Average number of iterations versus number of separators for the
DJ algorithm. (b) Communication burden (bytes of exchanged information)
for the DJ and DDF-SAM algorithms, for increasing number of separators.

(a) Rotation Noise (b) Translation Noise
Fig. 20. Convergence for increasing levels of noise (scenario with 2 Robots in
Gazebo). (a) Average rotation estimation error for �R = {1, 5, 10, 15, 20}�.
(b) Average pose estimation error for �t = {0.1, 0.3, 0.5, 0.8, 1.0}m.

rotations and �
t

= 0.2m for the translations. Six robots are
used by default. Results are averaged over 10 Monte Carlo
runs.

Figs. 23 show the comparison between the object locations
and trajectories estimated using multi-robot mapping and
centralized mapping for two scenarios. Videos showing the
map building for the two scenarios are available at: https://
youtu.be/nXJamypPvVY and https://youtu.be/nYm2sSHuGjo.

1) Accuracy in the Number of Robots: Table III reports the
number of iterations and our accuracy metrics (cost, ATE*,
ARE*) for increasing number of robots. The table confirms
that the distributed approach is nearly as accurate as the
centralized Gauss-Newton method and the number of iterations
does not increase with increasing number of robots, making
our approach scalable to large teams. Usually, few tens of
iterations suffice to reach an accurate estimate.

2) Sensitivity to Measurement Noise: We further test the
accuracy of our approach by evaluating the number of itera-
tions, the cost, the ATE* and the ARE* for increasing levels of
noise. Table IV shows that our approach is able to replicate the
accuracy of the centralized Gauss-Newton method, regardless
of the noise level.

B. Field Experiments
We tested the DJ approach on field data collected by

two Jackal robots (Fig. 24), moving in a MOUT (Military
Operations in Urban Terrain) test facility. Each robot collects
3D scans using an Hokuyo 30LS-EW with a custom tilt
mechanism, and uses IMU and wheel odometry to measure
its ego-motion. 3D scans are used to compute inter-robot
measurements (via ICP) during rendezvous. We evaluated our
approach in three different floors of a building in the facility.

4 robots 9 robots 16 robots 49 robots
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(a) Rotation Noise (b) Translation Noise
Fig. 15. Convergence for increasing levels of noise (scenario with 49
Robots). (a) Average rotation estimation error for �R = {1, 5, 10, 15, 20}�.
(b) Average pose estimation error for �t = {0.1, 0.3, 0.5, 0.8, 1.0}m.

(a) Exploration steps (b) Monte Carlo Runs
Fig. 16. (a) Number of exploration steps required to explore a fixed sized
grid with the increasing number of robots. (b) Shows the monte-carlo run
trajectories for Gazebo scenario.

(a) Initial (b) 10 iterations (c) 1000 iterations
Fig. 17. Trajectory estimates for the scenario with 49 robots. (a) Odometric
estimate (not used in our approach and only given for visualization purposes),
(b)-(c) DJ estimate after given number of iterations.

• (a) estimation error (wrt centralized) averaged over 100
Monte Carlo runs, for increasing noise level, for team of
2 robots

• (b) estimation error (wrt centralized) averaged over 100
Monte Carlo runs, for increasing noise level, for team of
4 robots

• 2 point clouds, one for indoor scenario, the other for
outdoor scenario

• amount of exchanged bytes for (a) and (b), compared
with DDF-SAM (other the comparison should be in the
real tests)

• BONUS: exploration time over 100 monte carlo runs for
increasing number of robots

Gazebo Simulations (Object based). we characterize the
performance of the proposed approach in terms of scalability
in the number of robots and sensitivity to noise. We test the
approach in two scenarios (a) 25 Chairs and (b) House,
which we simulated in Gazebo. In the 25 Chairs scenario,
we placed 25 chairs as objects on a grid, with each chair
placed at a random angle. In the House scenario, we placed
furniture as objects in order to simulate an indoor living room
environment. Fig. 22 shows the two scenarios. Unless specified
otherwise, we generate measurement noise from a zero-mean
Gaussian distribution with standard deviation �

R

= 5� for the

(a) (b)
Fig. 18. (a) Average number of iterations versus number of separators for the
DJ algorithm. (b) Communication burden (bytes of exchanged information)
for the DJ and DDF-SAM algorithms, for increasing number of separators.

(a) Rotation Noise (b) Translation Noise
Fig. 20. Convergence for increasing levels of noise (scenario with 2 Robots in
Gazebo). (a) Average rotation estimation error for �R = {1, 5, 10, 15, 20}�.
(b) Average pose estimation error for �t = {0.1, 0.3, 0.5, 0.8, 1.0}m.

rotations and �
t

= 0.2m for the translations. Six robots are
used by default. Results are averaged over 10 Monte Carlo
runs.

Figs. 23 show the comparison between the object locations
and trajectories estimated using multi-robot mapping and
centralized mapping for two scenarios. Videos showing the
map building for the two scenarios are available at: https://
youtu.be/nXJamypPvVY and https://youtu.be/nYm2sSHuGjo.

1) Accuracy in the Number of Robots: Table III reports the
number of iterations and our accuracy metrics (cost, ATE*,
ARE*) for increasing number of robots. The table confirms
that the distributed approach is nearly as accurate as the
centralized Gauss-Newton method and the number of iterations
does not increase with increasing number of robots, making
our approach scalable to large teams. Usually, few tens of
iterations suffice to reach an accurate estimate.

2) Sensitivity to Measurement Noise: We further test the
accuracy of our approach by evaluating the number of itera-
tions, the cost, the ATE* and the ARE* for increasing levels of
noise. Table IV shows that our approach is able to replicate the
accuracy of the centralized Gauss-Newton method, regardless
of the noise level.

B. Field Experiments
We tested the DJ approach on field data collected by

two Jackal robots (Fig. 24), moving in a MOUT (Military
Operations in Urban Terrain) test facility. Each robot collects
3D scans using an Hokuyo 30LS-EW with a custom tilt
mechanism, and uses IMU and wheel odometry to measure
its ego-motion. 3D scans are used to compute inter-robot
measurements (via ICP) during rendezvous. We evaluated our
approach in three different floors of a building in the facility.

4 robots 9 robots 16 robots 49 robots
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(a) Rotation Noise (b) Translation Noise
Fig. 15. Convergence for increasing levels of noise (scenario with 49
Robots). (a) Average rotation estimation error for �R = {1, 5, 10, 15, 20}�.
(b) Average pose estimation error for �t = {0.1, 0.3, 0.5, 0.8, 1.0}m.

(a) Exploration steps (b) Monte Carlo Runs
Fig. 16. (a) Number of exploration steps required to explore a fixed sized
grid with the increasing number of robots. (b) Shows the monte-carlo run
trajectories for Gazebo scenario.

(a) Initial (b) 10 iterations (c) 1000 iterations
Fig. 17. Trajectory estimates for the scenario with 49 robots. (a) Odometric
estimate (not used in our approach and only given for visualization purposes),
(b)-(c) DJ estimate after given number of iterations.

• (a) estimation error (wrt centralized) averaged over 100
Monte Carlo runs, for increasing noise level, for team of
2 robots

• (b) estimation error (wrt centralized) averaged over 100
Monte Carlo runs, for increasing noise level, for team of
4 robots

• 2 point clouds, one for indoor scenario, the other for
outdoor scenario

• amount of exchanged bytes for (a) and (b), compared
with DDF-SAM (other the comparison should be in the
real tests)

• BONUS: exploration time over 100 monte carlo runs for
increasing number of robots

Gazebo Simulations (Object based). we characterize the
performance of the proposed approach in terms of scalability
in the number of robots and sensitivity to noise. We test the
approach in two scenarios (a) 25 Chairs and (b) House,
which we simulated in Gazebo. In the 25 Chairs scenario,
we placed 25 chairs as objects on a grid, with each chair
placed at a random angle. In the House scenario, we placed
furniture as objects in order to simulate an indoor living room
environment. Fig. 22 shows the two scenarios. Unless specified
otherwise, we generate measurement noise from a zero-mean
Gaussian distribution with standard deviation �
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= 5� for the

(a) (b)
Fig. 18. (a) Average number of iterations versus number of separators for the
DJ algorithm. (b) Communication burden (bytes of exchanged information)
for the DJ and DDF-SAM algorithms, for increasing number of separators.

(a) Rotation Noise (b) Translation Noise
Fig. 20. Convergence for increasing levels of noise (scenario with 2 Robots in
Gazebo). (a) Average rotation estimation error for �R = {1, 5, 10, 15, 20}�.
(b) Average pose estimation error for �t = {0.1, 0.3, 0.5, 0.8, 1.0}m.
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= 0.2m for the translations. Six robots are
used by default. Results are averaged over 10 Monte Carlo
runs.

Figs. 23 show the comparison between the object locations
and trajectories estimated using multi-robot mapping and
centralized mapping for two scenarios. Videos showing the
map building for the two scenarios are available at: https://
youtu.be/nXJamypPvVY and https://youtu.be/nYm2sSHuGjo.

1) Accuracy in the Number of Robots: Table III reports the
number of iterations and our accuracy metrics (cost, ATE*,
ARE*) for increasing number of robots. The table confirms
that the distributed approach is nearly as accurate as the
centralized Gauss-Newton method and the number of iterations
does not increase with increasing number of robots, making
our approach scalable to large teams. Usually, few tens of
iterations suffice to reach an accurate estimate.

2) Sensitivity to Measurement Noise: We further test the
accuracy of our approach by evaluating the number of itera-
tions, the cost, the ATE* and the ARE* for increasing levels of
noise. Table IV shows that our approach is able to replicate the
accuracy of the centralized Gauss-Newton method, regardless
of the noise level.

B. Field Experiments
We tested the DJ approach on field data collected by

two Jackal robots (Fig. 24), moving in a MOUT (Military
Operations in Urban Terrain) test facility. Each robot collects
3D scans using an Hokuyo 30LS-EW with a custom tilt
mechanism, and uses IMU and wheel odometry to measure
its ego-motion. 3D scans are used to compute inter-robot
measurements (via ICP) during rendezvous. We evaluated our
approach in three different floors of a building in the facility.

4 robots 9 robots 16 robots 49 robots
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Anytime Flavor

10

(a) Rotation Noise (b) Translation Noise
Fig. 15. Convergence for increasing levels of noise (scenario with 49
Robots). (a) Average rotation estimation error for �R = {1, 5, 10, 15, 20}�.
(b) Average pose estimation error for �t = {0.1, 0.3, 0.5, 0.8, 1.0}m.

(a) Exploration steps (b) Monte Carlo Runs
Fig. 16. (a) Number of exploration steps required to explore a fixed sized
grid with the increasing number of robots. (b) Shows the monte-carlo run
trajectories for Gazebo scenario.

(a) Initial (b) 10 iterations (c) 1000 iterations
Fig. 17. Trajectory estimates for the scenario with 49 robots. (a) Odometric
estimate (not used in our approach and only given for visualization purposes),
(b)-(c) DJ estimate after given number of iterations.

• (a) estimation error (wrt centralized) averaged over 100
Monte Carlo runs, for increasing noise level, for team of
2 robots

• (b) estimation error (wrt centralized) averaged over 100
Monte Carlo runs, for increasing noise level, for team of
4 robots

• 2 point clouds, one for indoor scenario, the other for
outdoor scenario

• amount of exchanged bytes for (a) and (b), compared
with DDF-SAM (other the comparison should be in the
real tests)

• BONUS: exploration time over 100 monte carlo runs for
increasing number of robots

Gazebo Simulations (Object based). we characterize the
performance of the proposed approach in terms of scalability
in the number of robots and sensitivity to noise. We test the
approach in two scenarios (a) 25 Chairs and (b) House,
which we simulated in Gazebo. In the 25 Chairs scenario,
we placed 25 chairs as objects on a grid, with each chair
placed at a random angle. In the House scenario, we placed
furniture as objects in order to simulate an indoor living room
environment. Fig. 22 shows the two scenarios. Unless specified
otherwise, we generate measurement noise from a zero-mean
Gaussian distribution with standard deviation �

R

= 5� for the

(a) (b)
Fig. 18. (a) Average number of iterations versus number of separators for the
DJ algorithm. (b) Communication burden (bytes of exchanged information)
for the DJ and DDF-SAM algorithms, for increasing number of separators.

(a) Rotation Noise (b) Translation Noise
Fig. 20. Convergence for increasing levels of noise (scenario with 2 Robots in
Gazebo). (a) Average rotation estimation error for �R = {1, 5, 10, 15, 20}�.
(b) Average pose estimation error for �t = {0.1, 0.3, 0.5, 0.8, 1.0}m.

rotations and �
t

= 0.2m for the translations. Six robots are
used by default. Results are averaged over 10 Monte Carlo
runs.

Figs. 23 show the comparison between the object locations
and trajectories estimated using multi-robot mapping and
centralized mapping for two scenarios. Videos showing the
map building for the two scenarios are available at: https://
youtu.be/nXJamypPvVY and https://youtu.be/nYm2sSHuGjo.

1) Accuracy in the Number of Robots: Table III reports the
number of iterations and our accuracy metrics (cost, ATE*,
ARE*) for increasing number of robots. The table confirms
that the distributed approach is nearly as accurate as the
centralized Gauss-Newton method and the number of iterations
does not increase with increasing number of robots, making
our approach scalable to large teams. Usually, few tens of
iterations suffice to reach an accurate estimate.

2) Sensitivity to Measurement Noise: We further test the
accuracy of our approach by evaluating the number of itera-
tions, the cost, the ATE* and the ARE* for increasing levels of
noise. Table IV shows that our approach is able to replicate the
accuracy of the centralized Gauss-Newton method, regardless
of the noise level.

B. Field Experiments
We tested the DJ approach on field data collected by

two Jackal robots (Fig. 24), moving in a MOUT (Military
Operations in Urban Terrain) test facility. Each robot collects
3D scans using an Hokuyo 30LS-EW with a custom tilt
mechanism, and uses IMU and wheel odometry to measure
its ego-motion. 3D scans are used to compute inter-robot
measurements (via ICP) during rendezvous. We evaluated our
approach in three different floors of a building in the facility.

Initial 10 iterations 1000 iterations Centralized

Already accurate after few iterations. 
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Scalable in the number of robots
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Communication is Linear

Increase in communication burden is linear with the increase in the 
number of communication links

10

(a) Rotation Noise (b) Translation Noise
Fig. 15. Convergence for increasing levels of noise (scenario with 49
Robots). (a) Average rotation estimation error for �R = {1, 5, 10, 15, 20}�.
(b) Average pose estimation error for �t = {0.1, 0.3, 0.5, 0.8, 1.0}m.

(a) Exploration steps (b) Monte Carlo Runs
Fig. 16. (a) Number of exploration steps required to explore a fixed sized
grid with the increasing number of robots. (b) Shows the monte-carlo run
trajectories for Gazebo scenario.

(a) Initial (b) 10 iterations (c) 1000 iterations
Fig. 17. Trajectory estimates for the scenario with 49 robots. (a) Odometric
estimate (not used in our approach and only given for visualization purposes),
(b)-(c) DJ estimate after given number of iterations.

• (a) estimation error (wrt centralized) averaged over 100
Monte Carlo runs, for increasing noise level, for team of
2 robots

• (b) estimation error (wrt centralized) averaged over 100
Monte Carlo runs, for increasing noise level, for team of
4 robots

• 2 point clouds, one for indoor scenario, the other for
outdoor scenario

• amount of exchanged bytes for (a) and (b), compared
with DDF-SAM (other the comparison should be in the
real tests)

• BONUS: exploration time over 100 monte carlo runs for
increasing number of robots

Gazebo Simulations (Object based). we characterize the
performance of the proposed approach in terms of scalability
in the number of robots and sensitivity to noise. We test the
approach in two scenarios (a) 25 Chairs and (b) House,
which we simulated in Gazebo. In the 25 Chairs scenario,
we placed 25 chairs as objects on a grid, with each chair
placed at a random angle. In the House scenario, we placed
furniture as objects in order to simulate an indoor living room
environment. Fig. 22 shows the two scenarios. Unless specified
otherwise, we generate measurement noise from a zero-mean
Gaussian distribution with standard deviation �

R

= 5� for the

(a) (b)
Fig. 18. (a) Average number of iterations versus number of separators for the
DJ algorithm. (b) Communication burden (bytes of exchanged information)
for the DJ and DDF-SAM algorithms, for increasing number of separators.

(a) Rotation Noise (b) Translation Noise
Fig. 20. Convergence for increasing levels of noise (scenario with 2 Robots in
Gazebo). (a) Average rotation estimation error for �R = {1, 5, 10, 15, 20}�.
(b) Average pose estimation error for �t = {0.1, 0.3, 0.5, 0.8, 1.0}m.

rotations and �
t

= 0.2m for the translations. Six robots are
used by default. Results are averaged over 10 Monte Carlo
runs.

Figs. 23 show the comparison between the object locations
and trajectories estimated using multi-robot mapping and
centralized mapping for two scenarios. Videos showing the
map building for the two scenarios are available at: https://
youtu.be/nXJamypPvVY and https://youtu.be/nYm2sSHuGjo.

1) Accuracy in the Number of Robots: Table III reports the
number of iterations and our accuracy metrics (cost, ATE*,
ARE*) for increasing number of robots. The table confirms
that the distributed approach is nearly as accurate as the
centralized Gauss-Newton method and the number of iterations
does not increase with increasing number of robots, making
our approach scalable to large teams. Usually, few tens of
iterations suffice to reach an accurate estimate.

2) Sensitivity to Measurement Noise: We further test the
accuracy of our approach by evaluating the number of itera-
tions, the cost, the ATE* and the ARE* for increasing levels of
noise. Table IV shows that our approach is able to replicate the
accuracy of the centralized Gauss-Newton method, regardless
of the noise level.

B. Field Experiments
We tested the DJ approach on field data collected by

two Jackal robots (Fig. 24), moving in a MOUT (Military
Operations in Urban Terrain) test facility. Each robot collects
3D scans using an Hokuyo 30LS-EW with a custom tilt
mechanism, and uses IMU and wheel odometry to measure
its ego-motion. 3D scans are used to compute inter-robot
measurements (via ICP) during rendezvous. We evaluated our
approach in three different floors of a building in the facility.
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DDF-SAM: Fully distributed SLAM using constrained factor graphs 
Cunningham et al. (IROS 2010)



We tested the proposed approach on field 
data collected by two to ten Jackal robots, 
moving in different environments. We use 
the estimated trajectories to reconstruct a 

3D map of the facility 
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RGBD Frame

Wheel Odometry

Orbbec Astra 
RGB-D sensor

Velodyne 32-E 
Laser Scanner IMU

Wheel 
Odometry

Laser Scan

IMU

IMU Corrected 
Wheel Odometry

Laser Scan  
Relative Pose

RGB-D Frame 
Relative Pose

OmniMapper

ORB-SLAM2

Laser Scan GICP

OmniMapper: A multimodal mapping framework  
Trevor et al. (ICRA 2014)

Ego-motion Estimation



Field Experiments
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each robot estimates its own trajectory in the local coordinate frame

Robot Communication
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each robot communicates nearby keyframes and laser scans to the other robot

Robot Communication
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each robot communicates nearby keyframes and laser scans to the other robot
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Field Experiments
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Assumption: Parameters are conservatively chosen to avoid false positive matches.
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Inter-robot communication factor is added between matching frames 
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Factor graph optimized using Distributed Gauss-Seidel Algorithm

Robot Communication



Field Experiments (4 Robots)
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Military Training Facility Size of the map: 17 m X 17 m 
Average Number of Keyframes: 264 

Average Distance travelled by each robot: 246.28 m 
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Field Experiments (5 Robots)
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Average Number of Poses: 6835 
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Linear in Communication

• Robust to bad initialization
• Resilient to measurement noise
• Scalable in the number of robots
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Remaining Issues…

reduce the communication bandwidth 
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Requires exchange of 3D 
point clouds to establish 
communication link among 
robots.

Each robot has to store point 
cloud map which increases 
their memory requirement
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2. Distributed Object-based SLAM with Known Object Models                    
(using objects as landmarks) 

3. Distributed Object-based SLAM with Joint Object Modeling and Mapping                     
(jointly model objects along with SLAM)  

4. Conclusions and Future Work
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1. Reduces memory requirements and information exchange among robots compared to 
point cloud based representation 

~13 MB ~1 KB

>
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1. Reduces memory requirements and information exchange among robots compared to 
point cloud based representation 

2. Objects are more discriminative as compared to point clouds. 

each point looks similar 
to the points in its surrounding 

objects look dissimilar  
to the points in its 

surrounding

Why should we use objects?

87



1. Reduces memory requirements and information exchange among robots compared to 
point cloud based representation 

2. Objects are more discriminative as compared to point clouds. 

3. Reduces the computational complexity of SLAM. 

camera
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1. Reduces memory requirements and information exchange among robots compared to 
point cloud based representation 

2. Objects are more discriminative as compared to point clouds. 

3. Reduces the computational complexity of SLAM. 

4. Results in maps that are easier for humans to understand.  

Why should we use objects?
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Assumptions:   
i. 3D textured model of each 

object instance is known and is 
used for object pose estimation. 

ii. Object detection and pose 
estimation parameters are 
chosen conservatively to avoid 
false positives.



Distributed Object-based SLAM

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

robot

robot

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

each robot communicates the list of objects to the other robot
93

club chair:  
cantilever chair: 

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

club chair:  
cantilever chair: 

Assumption: initial position 
of each robot is known to all 

the other robots
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loop closure constraints are added between the common set of objects seen by both the robots
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loop closure constraints are added between the common set of objects seen by both the robots
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loop closure constraints are added between the common set of objects seen by both the robots

Inter-robot
 object-object factor
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Factor graph optimized using Distributed Gauss-Seidel Algorithm
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Object Dataset

BigBIRD Dataset

• Contains high resolution images for training the object detector.

• Contains 3D textured object models for object pose estimation. 

BigBIRD: A Large-Scale 3D Database of Object Instances 
Singh et al. (ICRA 2014)98
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Motion capture data annotated using Sun3D annotator

SUN3D: A Database of Big Spaces Reconstructed using SfM and Object Labels 
Xiao et al. (ICCV 2013)

Pose estimates from Motion Capture data is used by Sun3D annotator to automatically propagate annotations.
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Pose estimates from SLAM data is used by Sun3D annotator to automatically propagate annotations.
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Object Detection
BigBIRD Dataset

360 turntable video 

Motion capture data annotated
 using Sun3D annotator

SLAM data annotated
 using Sun3D annotator

You Only Look Once: Unified, Real-Time Object Detection 
 Redmon et al. (CVPR 2016)

YOLO Detector
448

448

3

7

7

Conv. Layer
7x7x64-s-2

Maxpool Layer
2x2-s-2

3
3

112

112

192

3
3

56

56

256

Conn. Layer

4096

Conn. LayerConv. Layer
3x3x192

Maxpool Layer
2x2-s-2

Conv. Layers
1x1x128
3x3x256
1x1x256
3x3x512

Maxpool Layer
2x2-s-2

3
3

28

28

512

Conv. Layers
1x1x256
3x3x512
1x1x512

3x3x1024
Maxpool Layer

2x2-s-2

3
3

14

14

1024

Conv. Layers
1x1x512

3x3x1024
3x3x1024

3x3x1024-s-2

3

3

7

7
1024

7

7
1024

7

7
30

} ×4 } ×2
Conv. Layers
3x3x1024
3x3x1024

Figure 3: The Architecture. Our detection network has 24 convolutional layers followed by 2 fully connected layers. Alternating 1⇥ 1
convolutional layers reduce the features space from preceding layers. We pretrain the convolutional layers on the ImageNet classification
task at half the resolution (224⇥ 224 input image) and then double the resolution for detection.

The final output of our network is the 7⇥ 7⇥ 30 tensor
of predictions.

2.2. Training

We pretrain our convolutional layers on the ImageNet
1000-class competition dataset [30]. For pretraining we use
the first 20 convolutional layers from Figure 3 followed by a
average-pooling layer and a fully connected layer. We train
this network for approximately a week and achieve a single
crop top-5 accuracy of 88% on the ImageNet 2012 valida-
tion set, comparable to the GoogLeNet models in Caffe’s
Model Zoo [24]. We use the Darknet framework for all
training and inference [26].

We then convert the model to perform detection. Ren et
al. show that adding both convolutional and connected lay-
ers to pretrained networks can improve performance [29].
Following their example, we add four convolutional lay-
ers and two fully connected layers with randomly initialized
weights. Detection often requires fine-grained visual infor-
mation so we increase the input resolution of the network
from 224⇥ 224 to 448⇥ 448.

Our final layer predicts both class probabilities and
bounding box coordinates. We normalize the bounding box
width and height by the image width and height so that they
fall between 0 and 1. We parametrize the bounding box x

and y coordinates to be offsets of a particular grid cell loca-
tion so they are also bounded between 0 and 1.

We use a linear activation function for the final layer and
all other layers use the following leaky rectified linear acti-
vation:

�(x) =

(
x, if x > 0

0.1x, otherwise
(2)

We optimize for sum-squared error in the output of our

model. We use sum-squared error because it is easy to op-
timize, however it does not perfectly align with our goal of
maximizing average precision. It weights localization er-
ror equally with classification error which may not be ideal.
Also, in every image many grid cells do not contain any
object. This pushes the “confidence” scores of those cells
towards zero, often overpowering the gradient from cells
that do contain objects. This can lead to model instability,
causing training to diverge early on.

To remedy this, we increase the loss from bounding box
coordinate predictions and decrease the loss from confi-
dence predictions for boxes that don’t contain objects. We
use two parameters, �coord and �noobj to accomplish this. We
set �coord = 5 and �noobj = .5.

Sum-squared error also equally weights errors in large
boxes and small boxes. Our error metric should reflect that
small deviations in large boxes matter less than in small
boxes. To partially address this we predict the square root
of the bounding box width and height instead of the width
and height directly.

YOLO predicts multiple bounding boxes per grid cell.
At training time we only want one bounding box predictor
to be responsible for each object. We assign one predictor
to be “responsible” for predicting an object based on which
prediction has the highest current IOU with the ground
truth. This leads to specialization between the bounding box
predictors. Each predictor gets better at predicting certain
sizes, aspect ratios, or classes of object, improving overall
recall.

During training we optimize the following, multi-part

Trained Network

Detects objects at 45fps
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Simulation Experiments
Tested the approach in simulation on two scenarios over 10 Monte Carlo runs.

Gray = Centralized Estimate
Red = Distributed Estimate

Distributed estimate converges to the 
centralized estimate 103
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Scalable in the number of robots
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Resilient to Noise
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Field Experiments
Object detection and SLAM

Object landmarks

Detected objects are added as landmarks in the map

Green = Robot 0                 Red = Robot 1
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Loop closure factor is added when two robots see the same object
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Field Experiments

Green = Robot 0                 Red = Robot 1

Experimented with 18 objects in a large scale environment.
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Field Experiments
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We tested the proposed approach on field data collected by two Jackal 
robots, moving in different indoor settings.

Field Experiments
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Accuracy
Distributed Centralized

Stadium-1

Stadium-2

House

Distributed estimate converges to the centralized estimate
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Memory Requirements

Scenario Average Per Robot Memory Requirement

Point Cloud Map Object level Map

Stadium-1 1.2 GB 1.9 MB

Stadium-2 1.4 GB 1.9 MB

House 2.1 GB 1.9 MB
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Memory Requirements

Object level map requires three orders of magnitude less 
memory as compared to Point cloud map

Scenario Average Per Robot Memory Requirement

Point Cloud Map Object level Map

Stadium-1 1.2 GB 1.9 MB

Stadium-2 1.4 GB 1.9 MB

House 2.1 GB 1.9 MB
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Communication Bandwidth 
Requirements

114

Communication Bandwidth =

Amount of communication 
required to perform distributed 

optimization given the 
communication link.

The amount of communication 
required to establish that link. 

+

Distributed Gauss-Seidel

Distributed Object-based SLAM



Communication Bandwidth 
Requirements

Scenario Average Communication Bandwidth Requirement

Point Cloud Map Object level Map

Stadium-1 19 MB 0.16 KB

Stadium-2 14 MB 0.12 KB

House 16 MB 0.22 KB

115

Communication Bandwidth is the amount of communication 
required to establish to the link. 



Communication Bandwidth 
Requirements

Scenario Average Communication Bandwidth Requirement

Point Cloud Map Object level Map

Stadium-1 19 MB 0.16 KB

Stadium-2 14 MB 0.12 KB

House 16 MB 0.22 KB

Object level map requires four orders of magnitude less 
communication bandwidth as compared to Point cloud map
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So far…

reduce the communication bandwidth 
and the memory

outputs a human understandable map

improves the robustness and scalability

Using objects as landmarks

state of art distributed optimizer

distributed SLAM

1.

2.

3.

+
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Using objects reduces the 
communication bandwidth 
and the memory requirements
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Distributed Object based SLAM

• Robust to bad initialization
• Resilient to measurement noise
• Scalable in the number of robots

Using objects reduces the 
communication bandwidth 
and the memory requirements



So far…

reduce the communication bandwidth 
and the memory

outputs a human understandable map

improves the robustness and scalability

Using objects as landmarks

state of art distributed optimizer

distributed SLAM

1.

2.

3.

+

121

Distributed Object based SLAM

• Robust to bad initialization
• Resilient to measurement noise
• Scalable in the number of robots

Resulting object level map can be 
used for manipulation tasks like pick 
and place
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Distributed Object based SLAM

• Robust to bad initialization
• Resilient to measurement noise
• Scalable in the number of robots

Distributed Gauss-Seidel 

Resulting object level map can be 
used for manipulation tasks like pick 
and place

Using objects reduces the 
communication bandwidth 
and the memory requirements



Remaining Issues…

reduce the communication bandwidth 
and the memory

outputs a human understandable map

improves the robustness and scalability

Using objects as landmarks

state of art distributed optimizer

distributed SLAM

1.

2.
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+
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Won’t generalize to 
unseen object instances
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1. Distributed Gauss-Seidel Approach                                                                
(state of art distributed optimizer) 

2. Distributed Object-based SLAM with Known Object Models                    
(using objects as landmarks) 

3. Distributed Object-based SLAM with Joint Object Modeling and Mapping                     
(jointly model objects along with SLAM)  

4. Conclusions and Future Work
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• Can be challenging to store a model of all the object instances due to large intra-class 
variation.  

Google 3D warehouse!

(about 2.5 million models)

Motivations

c.f. Changhyun Choi et al. 
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• Can be challenging to store a model of all the object instances due to large intra-class 
variation.  

• Searching through all the object models for object pose estimation can be 
computationally demanding. 

• It won’t generalize to unseen instances of the same object category as well.  

object pose estimation will fail
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SLAM with Object Discovery, Modeling and Mapping 
 Choudhary et al. (IROS 2014)
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Object-based SLAM  
with Joint Object Modeling and Mapping

each robot detects object category and models them at the 
 instance level in the local coordinate frame.
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When the robot is back to the same area after a loop, it again 
models the objects in the same area
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The object-object loop closure thread runs in parallel and matches the modeled objects
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A factor between the matching object landmarks is added which is then optimized  
using Gauss-Newton method.
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RGBD Frame Non-planar 
segments

extract 
planes

detect  
objects

Object 
Segments

Planar Segments

Object Segment
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Aggregated 
Object 

Segments

data  
associate

RGBD Frame Non-planar 
segments

extract 
planes

detect  
objects

Object 
Segments

Data Associate against all the 
aggregated object segments in co-
visible frames using ICP-like score:   

if 50% of the points in an object segment 
have a distance of 2 cm or less to the 

nearest aggregated object segment, it is 
considered a match
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Aggregated 
Object 

Segments

data  
associate

if visible in more  
than K frames and 

 aggregated max category 
probability is > threshold

Add Object as 
Landmark

RGBD Frame Non-planar 
segments

extract 
planes

detect  
objects

Object 
Segments

Object-Object 
loop closure 

using 3DMatch 3DMatch: Learning Local Geometric 
Descriptors from 3D Reconstructions 

Zeng et al. (CVPR 2017)

sample  
object models
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Experiments  
(UW RGB-D Scenes v2 dataset)

Trajectory Error

Our approach is as accurate as ORB-SLAM2
Object detector is fine-tuned on  UW Scenes v1 and UW Object dataset
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Experiments  
(UW RGB-D Scenes v2 dataset)

Memory Comparison

Our approach requires much less memory than ORB-SLAM2
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Experiments  
(Large-Scale handheld dataset)

Pre-trained COCO Object detector is used

Object-SLAM ORB-SLAM2

Size of the map: 21 m X 21 m 
Number of Poses: 5284 

Distance travelled: 93.09 m 
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Experiments  
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Pre-trained COCO Object detector is used

Object-SLAM ORB-SLAM2

Size of the map: 19 m X 18 m 
Number of Poses: 6382 

Distance travelled: 102.84 m 

Kintinuous

145



Experiments  
(Large-Scale handheld dataset)

Trajectory Error (w.r.t ORB-SLAM2) Memory Requirements
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Experiments (Large-Scale Robot dataset)

Object detector is fine-tuned on BigBird dataset

Object-SLAM ORB-SLAM2

Klaus

Military Training 
Facility

IRIM

CPL
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Experiments (Large-Scale Robot dataset)

Trajectory Error (w.r.t ORB-SLAM2) Memory Requirements

Scene
M

em
or

y 
(in

 M
B)

Scene ATE (m)

Klaus 0.28

Military Facility 0.15

IRIM 0.10

CPL 0.32

148



each robot will perform object slam with joint object modeling and mapping
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modeled objects in one robot are matched to the corresponding models from the other robot
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Relative pose estimated using 3DMatch is used as the measurement  
in inter-robot object-object factor
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Factor graph optimized using Distributed Gauss-Seidel Algorithm
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Optimized estimates can be used to produce fused object models
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Trade-off

Communication Bandwidth

Memory Requirements

Generalizability

Increases because object models are 
communicated as well instead of 

communicating object labels

No need to store object models for each 
object instance

Generalizes to unknown object instances



Experiments (Large-Scale Robot dataset)

Object detector is fine-tuned on BigBird dataset

Distributed
 Object-SLAM

Distributed
ORB-SLAM2

Klaus (5 robots)

Military Training 
Facility (10 robots)

IRIM (11 robots)
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Experiments  
(Large-Scale handheld dataset)

Communication Requirements Memory Requirements

C
om

m
un

ic
at

io
n 

(in
 M

B)

Scene Scene
M

em
or

y 
(in

 M
B)

Our approach has much less memory and communication 
requirement than distributed keyframe based approach.

163



Outline

1. Distributed Gauss-Seidel Approach                                                                
(state of art distributed optimizer) 

2. Distributed Object-based SLAM with Known Object Models                    
(using objects as landmarks) 

3. Distributed Object-based SLAM with Joint Object Modeling and Mapping                     
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Distributed Outlier Rejection 
(Future Work)

Investigate distributed implementation of outlier rejection methods*, 
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robots to exchange all measurements. 
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*Selecting good measurements via l1 relaxation: a convex approach for robust estimation over graphs, 
 Carlone et al. (IROS 2014)



Multi Robot Exploration and Mapping 
(Future Work)
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