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What is distributed mapping?
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What is distributed mapping?

robot «

after the optimization, the resulting trajectory of each robot is globally consistent
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Problem Statement

Cooperative estimation of 3D robot trajectories from relative pose
measurements, with the following constraints:

1. Communication only occurs during rendezvous.
2. Data exchange must be minimal (due to limited bandwidth and privacy).

3. Memory required by each robot is minimal.

17



Contributions

18



Contributions

Yo, Ay%

* Distributed inference algorithm: robot o NG / \ym
split computation of trajectory estimation Yous "
algorithm among teammates
(Choudhary et al., ICRA 2016) robot Yo"y~

Distributed Trajectory Estimation with Privacy and Communication Constraints: a Two-Stage Distributed Gauss-Seidel Approach
18 Choudhary et al. (ICRA 2016)



Contributions

Yo, Ayag
* Distributed inference algorithm: robot o NG / \ym
split computation of trajectory estimation Yous "
algorithm among teammates
(Choudhary et al., ICRA 2016) robot Yo"y~

High level map representation: TR

teammates reason in terms of objects 7~

(Choudhary et al., ISER 2016) fa (r
object

robot trajectories

Multi Robot Object-based SLAM
Choudhary et al. (ISER 2016)

19



Contributions

Yo, Ayag
* Distributed inference algorithm: robot o NG / \ym
split computation of trajectory estimation Yous "
algorithm among teammates
(Choudhary et al., ICRA 2016) robot Yo"y~

High level map representation: TR

teammates reason in terms of objects 7~

(Choudhary et al., ISER 2016) fa (r
object

robot trajectories

Multi Robot Object-based SLAM
Choudhary et al. (ISER 2016)

19



Thesis Statement

Using objects as landmarks in a distributed SLAM framework
and leveraging a state of art distributed optimizer both reduce
the communication bandwidth and the memory used by each
robot, outputs a human understandable map and improves the
robustness and scalability of distributed SLAM.
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Our Approach

Trajectory estimation as Pose Graph Optimization
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we represent a smooth trajectory using a finite set of 3D poses
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Our Approach

Trajectory estimation as Pose Graph Optimization

= (Ri,ti) cSE (3)

B — E R R; . noise
Zij = (Rij, tij) _ .
tii = Ri (t; —t;) + noise

Edges in the graph correspond to relative pose measurements between pairs of poses
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Our Approach

Trajectory estimation as Pose Graph Optimization
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Centralized Two-Stage Approach

1. Solve for rotations first.

2. Qiven the rotations, recover full poses via a single Gauss-Newton iteration

Initialization Techniques for 3D SLAM: a Survey on Rotation Estimation and its Use in Pose Graph Optimization
Carlone et al. (ICRA 2015)
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Centralized Two-Stage Approach
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Centralized Two-Stage Approach

translation subproblem rotation subproblem
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rotation subproblem
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Distributed Gauss-Seidel Approach
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Distributed Gauss-Seidel Approach

Trajectory Estimation Problem Hessian Matrix
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Distributed Gauss-Seidel Approach
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Distributed Gauss-Seidel Approach

Trajectory Estimation Problem Hessian Matrix

Yas Q1 Q2 a3 Q4 31 [y [3
yOél 5 | |

robot o Yoy 2

: Yaa ]

robot 3 Yp:1 : 3, YB3 B2

distributed

Stop the iterations if the change in Gauss-Seidel

the estimate is sufficiently small

|yt — y*|| < threshold

centralized

. . >
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Distributed Gauss-Seidel Approach

error
distributed

Gauss-Seidel

centralized

. . >
iteration

Guaranteed Convergence:

The Gauss-Seidel iterations converge to the centralized solution
starting from any initial estimate
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Simulation Experiments

ISSS,

:‘l
hy,;
" 4

4 robots 9 robots 16 robots 49 robots

We simulate different problems with robots moving along a 3D grid
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Simulation Experiments

each robot’s trajectory is shown in different color
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communication link is shown in gray color

We simulate different problems with robots moving along a 3D grid
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Robust to bad Initialization

Distributed Gauss-Seidel DDF-SAM

(our algorithm) (state of art)

DDF-SAM: Fully distributed SLAM using constrained factor graphs
Cunningham et al. (IROS 2010)
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Resilient to Measurement Noise

150 -} Distributed-Gauss-Seidel Cost— |} Centralized Cost-— @ Iterations
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Scalable in the number of robots

40 -} Distributed Gauss-Seidel Cost— |} Centralized Cost— @ lterations
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20

Cost
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Communication Bandwidth

Requirements

Communication Bandwidth =

Amount of communication
required to perform distributed
optimization given the
communication link.

4=

The amount of communication
required to establish that link.
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Communication Bandwidth
Requirements

Distributed Gauss-Seidel

Amount of communication
required to perform distributed

optimization given the
communication link.

Communication Bandwidth = +

The amount of communication

required to establish that link.

Distributed Object-based SLAM
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Communication is Linear

5
> 5 X 10

- ——Distributed Gauss- Se|del
2 2t ——DDF-SAM /
-
o)
S 1.5}
e
)
O
o)
2 1t
=
Q
E
2 0.5
g
O —
O ol

2 4 6 8 10

#rendezvous

Increase in communication burden is linear with the increase in the
number of communication links

DDF-SAM: Fully distributed SLAM using constrained factor graphs
Cunningham et al. (IROS 2010)
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Fleld Experiments

We tested the proposed approach on field

data collected by two to ten Jackal robots, a: '

moving in different environments. We use | e e

the estimated trajectories to reconstructa = = =S
3D map of the facility |
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Fleld Experiments

Velodyne 32
Laer Scanne

RGBD Frame

Wheel Odometry

©
i
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-D sensor

RGB

| aser Scan
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Fleld Experiments

Ego-motion Estimation

ORB-SLAM2 RGB-D Frame
Relative Pose

RGBD Frame

Wheel Odometry

IMU Corrected
Wheel Odometry

OmniMapper

Laser Scan GICP Laser Scan
Relative Pose

| aser Scan

OmniMapper: A multimodal mapping framework
Trevor et al. (ICRA 2014)
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Fleld Experiments

Robot Communication

------------- i f—@ @ ¢
"‘— ~
""

robot «

robot 3
each robot estimates its own trajectory in the local coordinate frame
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Fleld Experiments

Robot Communication
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each robot communicates nearby keyframes and laser scans to the other robot
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Robot Communication
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each robot communicates nearby keyframes and laser scans to the other robot

70



Fleld Experiments

Robot Communication

Keyframes «
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Fleld Experiments

Robot Communication
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Fleld Experiments

Robot Communication

| aser Scan «

Keyframes «

Vocabulary Tree + i 3D-3D Sparse -
% potential P nitial Laser Scan [EN———..

TF-IDF Score keyfrahme Correspondences transformation GICP measurement'
threshold matehes +RANSAC

Keyframes (3 Laser Scan

Assumption: Parameters are conservatively chosen to avoid false positive matches.
Ia



Fleld Experiments

Robot Communication
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Fleld Experiments

Robot Communication
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Factor graph optimized using Distributed Gauss-Seidel Algorithm
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Field Experiments (4 Robots)

? .
femet A . ke Y

Military Training Facility o Size of the map: 17.m X 17 m
Average Number of Keyframes: 264

Average Distance travelled by each robot: 246.28 m
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Field Experiments (5 Robots)
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Average Number of Poses: 6835
Average Distance travelled by each robot: 231.67 m
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Field Experiments (10 Robots)

Size of the map: 15.8 m X 11.8 m
Average Number of Poses: 4564
Military Training Facility Average Distance travelled by each robot: 20.1 m
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Field Experiments (11 Robots)

.
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IRIM Lab
Georgia Tech

Size of the map: 55 m X 61 m
Average Number of Poses: 3995
Average Distance travelled by each robot: 72.4 m

77



Field Experiments (11 Robots)

.
_—

IRIM Lab
Georgia Tech

Size of the map: 55 m X 61 m
Average Number of Poses: 3995
Average Distance travelled by each robot: 72.4 m

77



t

Cos

Performance of our approach on
Fleld Data

/8



So far...

state of art distributed optimizer
4

Using objects as landmarks

distributed SLAM

reduce the communication bandwidth
and the memory

improves the robustness and scalability

outputs a human understandable map
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So far...

state of art distributed optimizer Distributed Gauss-Seidel

+

Using objects as landmarks

distributed SLAM

reduce thelcommunication bandwidth Linear in Communication

and the memory

: — - Robust to bad initialization
Improves the|robustness and scalability| - Resilient to measurement noise

- Scalable in the number of robots

outputs a human understandable map
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Remaining Issues...

state of art distributed optimizer
4

Using objects as landmarks

distributed SLAM

reduce thelcommunication bandwidth
and the[fiiemory |

improves the robustness and scalability

outputs a human understandable map

83

Requires exchange of 3D
point clouds to establish
communication link among
robots.

Each robot has to store point
cloud map which increases
their memory requirement



Outline

Distributed Gauss-Seidel Approach

(state of art distributed optimizer)

2. Distributed Object-based SLAM with Known Object Models

(using objects as landmarks)

3. Distributed Object-based SLAM with Joint Object Modeling and Mapping
(jointly model objects along with SLAM)

4. (Conclusions and Future Work
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Why should we use objects?

1. Reduces memory requirements and information exchange among robots compared to
point cloud based representation

~1 KB
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Why should we use objects?

1. Reduces memory requirements and information exchange among robots compared to
point cloud based representation

2. Objects are more discriminative as compared to point clouds.

each point looks similar

objects look dissimilar | A _
to the points in its surrounding

to the points in its
surrounding
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Why should we use objects?

Reduces memory requirements and information exchange among robots compared to
point cloud based representation

. Objects are more discriminative as compared to point clouds.

Reduces the computational complexity of SLAM.

-y -
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-
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-

-
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------
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Why should we use objects?

. Reduces memory requirements and information exchange among robots compared to
point cloud based representation

. Objects are more discriminative as compared to point clouds.
. Reduces the computational complexity of SLAM.

. Results in maps that are easier for humans to understand.
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Distributed Object-based SLAM

robot 6 each robot detects object and adds object landmarks locally
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Distributed Object-based SLAM

Assumptions:

I. 3D textured model of each
g object instance is known and is
cantilever used for object pose estimation.

chair

ii. Object detection and pose
estimation parameters are
chosen conservatively to avoid

@ false positives.

cantilever
chair

robot 6 each robot detects object and adds object landmarks locally
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Distributed Object-based SLAM
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Object Dataset

BigBIRD Dataset

BigBIRD: A Large-Scale 3D Database of Object Instances
98 Singh et al. (ICRA 2014)
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Object Dataset

BigBIRD Dataset

e (Contains high resolution images for training the object detector.

e Contains 3D textured object models for object pose estimation.

BigBIRD: A Large-Scale 3D Database of Object Instances
98 Singh et al. (ICRA 2014)
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Pose estimates from Motion Capture data is used by Sun3D annotator to automatically propagate annotations.

SUN3D: A Database of Big Spaces Reconstructed using SfM and Object Labels
Xiao et al. (ICCV 2013)
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Object Detection

360 turntable video
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SLAM data annotated
using Sun3D annotator
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Trained Network

Detects objects at 45fps

You Only Look Once: Unified, Real-Time Object Detection
Redmon et al. (CVPR 2016)
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Simulation Experiments

Tested the approach in simulation on two scenarios over 10 Monte Carlo runs.
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Scalable in the number of robots

200 | Distributed Gauss-Seidel Cost [l Centralized Cost— @ Iterations

150

100

Cost

20

2 4 6

#Robots

104



Resilient to Noise

1500 @ Distributed Gauss-Seidel Cost— |} Centralized Cost— @ |terations

1000

Cost

200

1deg&0.05m 5deg&0.1Tm 10deg&0.2m 15deg& 0.3 m

Rotation & Translation Noise
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Fleld Experiments

Object detection and SLAM

Object landmarks

Detected objects are added as landmarks in the map

Green = Robot 0 Red = Robot 1
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Fleld Experiments

Inter-Robot Loop Closure

Loop closure factor is added when two robots see the same object
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Loop Closure

Loop closure factor is added when two robots see the same object
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Fleld Experiments

Experimented with 18 objects In a large scale environment.

Green = Robot 0 Red = Robot 1
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Fleld Experiments
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Estimated trajectory Approximate trajectory
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Fleld Experiments

IE—
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We tested the proposed approach on field data collected by two Jackal
robots, moving in different indoor settings.
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Accuracy

Distributed Centralized

......................................................................................................................................................................................................................................

......................................................................................................................................................................................................................................

Distributed estimate converges to the centralized estimate
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Memory Requirements

Scenario Average Per Robot Memory Requirement

Point Cloud Map Object level Map

Stadium-1 1.2 GB ~ 1.9 VB
Stadium-2 1.4 GB ~1.9 MB
House 2.1 GB ~1.9 MB

+ Memory required to store
object models
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Memory Requirements

Scenario Average Per Robot Memory Requirement

Point Cloud Map Object level Map

Stadium-1 1.2 GB
Stadium-2 1.4 GB
House 2.1 GB

+ Memory required to store
object models

Object level map requires three orders of magnitude less
memory as compared to Point cloud map
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Communication Bandwidth
Requirements

Distributed Gauss-Seidel

Amount of communication
required to perform distributed

optimization given the
communication link.

Communication Bandwidth = +

The amount of communication

required to establish that link.

Distributed Object-based SLAM
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Communication Bandwidth
Requirements

Scenario Average Communication Bandwidth Requirement

Point Cloud Map Object level Map

Stadium-1 19 VB 0.16 KB
Stadium-2 14 VB 0.12 KB
House 16 MB 0.22 KB

Communication Bandwidth is the amount of communication
required to establish to the link.
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Communication Bandwidth
Requirements

Scenario Average Communication Bandwidth Requirement

Point Cloud Map Object level Map

Stadium-1 19 MB
Stadium-2 14 MB
House 16 MB

Object level map requires four orders of magnitude less
communication bandwidth as compared to Point cloud map
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So far...

state of art distributed optimizer
4

Using objects as landmarks

distributed SLAM

reduce the communication bandwidth
and the memory

improves the robustness and scalability

outputs a human understandable map
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state of art distributed optimizer Distributed Gauss-Seidel
+
Using objects as landmarks Distributed Object based SLAM

distributed SLAM

Using objects reduces the
reduce thelcommunication bandwidth| communication bandwidth
and thel memory and the memory requirements
- T - Robust to bad initialization
improves the robustness and scalability | . . it to measurement noise

- Scalable in the number of robots

Resulting object level map can be
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Remaining Issues...

state of art distributed optimizer
4

. . Won’t generalize to
Using objects as landmarks unseen object instances
distributed SLAM

reduce the communication bandwidth
and the memory

improves the robustness and scalability

outputs a human understandable map
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Outline

1. Distributed Gauss-Seidel Approach

(state of art distributed optimizer)

Distributed Object-based SLAM with Known Object Models

(using objects as landmarks)

3. Distributed Object-based SLAM with Joint Object Modeling and Mapping
(jointly model objects along with SLAM)

4. (Conclusions and Future Work
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Motivation

* Can be challenging to store a model of all the object instances due to large intra-class
variation.
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c.f. Changhyun Choi et al.



Motivation

* Can be challenging to store a model of all the object instances due to large intra-class
variation.

* Searching through all the object models for object pose estimation can be

computationally demanding.
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Motivation

* Can be challenging to store a model of all the object instances due to large intra-class
variation.

* Searching through all the object models for object pose estimation can be
computationally demanding.

* |t won’t generalize to unseen instances of the same object category as well.

cantilever

club armchair straight

chair chair / chair

object pose estimation will fail
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Distributed Object-based SLAM
with Joint Object Modeling and Mapping

Propose to extend the previous work to the case where object models are previously
unknown and are modeled jointly with Distributed Object based SLAM.

\»/j SLAM with Object Discovery, Modeling and Mapping
Choudhary et al. (IROS 2014)
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Object-based SLAM
with Joint Object Modeling and Mapping
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each robot detects object category and models them at the

instance level in the local coordinate frame.
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Object-based SLAM
with Joint Object Modeling and Mapping
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Object-based SLAM
with Joint Object Modeling and Mapping
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Object-based SLAM
with Joint Object Modeling and Mapping
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Object-based SLAM
with Joint Object Modeling and Mapping

- chair 4 chair 3 :

chair 1 chair 2

When the robot is back to the same area after a loop, it again

models the objects in the same area
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Object-based SLAM
with Joint Object Modeling and Mapping
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The object-object loop closure thread runs in parallel and matches the modeled objects
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Object-based SLAM
with Joint Object Modeling and Mapping

A factor between the matching object landmarks is added which is then optimized

using Gauss-Newton method.
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Object-based SLAM
with Joint Object Modeling and Mapping

extract Non-planar _detect, Object
RGBD Fram

Object Segment

i 7 Planar Segments
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Object-based SLAM
with Joint Object Modeling and Mapping

extract Non-planar detect Object
RGBD Fram —_—
G gl planes segments objects Segments
data
associate

Data Associate against all the
aggregated object segments in co- Aggregated
visible frames using ICP-like score: Object

Segments

if 50% of the points in an object segment
have a distance of 2 cm or less to the
nearest aggregated object segment, it is
considered a match
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Object-based SLAM
with Joint Object Modeling and Mapping

RGBD Frame

sample
object models

3DMatch: Learning Local Geometric
Descriptors from 3D Reconstructions
Zeng et al. (CVPR 2017)

extract Non-planar

planes segments

Object-Object
loop closure
using 3DMatch

detect
—_—
objects

Object

Segments

data
associate

Aggregated
Object
Segments

if visible in more
than K frames and
aggregated max category
+ probability is > threshold

Add Object as

Landmark
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RGBD Frame

sample
object models

3DMatch: Learning Local Geometric
Descriptors from 3D Reconstructions
Zeng et al. (CVPR 2017)
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Experiments
(UW RGB-D Scenes v2 dataset)
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Absolute Trajectory Error (m)

Trajectory Error
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Scene ID

Our approach is as accurate as ORB-SLAM?2

Object detector is fine-tuned on UW Scenes v1 and UW Object dataset



EXxperiments
(UW RGB-D Scenes v2 dataset)

Memory Comparison

B Object-SLAM | ORB-SLAM2

60

Memory (in MB)

20

2 4 g 8 10 12 14
Scene ID

Qur approach requires much less memory than ORB-SLAM2
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(Large-Scale handheld dataset)
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EXxperiments

(Large-Scale handheld dataset)
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Experiments
(Large-Scale handheld dataset)

Trajectory Error (w.r.t ORB-SLAM?2) Memory Requirements
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Experiments (Large-Scale Robot dataset)

Object-SLAM = ORB-SLAM2

Klaus

""""""" witary T | . O
Facility 7 v ol
IRIM

«~ | 1 | B

147 Object detector is fine-tuned on BigBird dataset



Experiments (Large-Scale Robot dataset)

Trajectory Error (w.r.t ORB-SLAM?2) Memory Requirements

125C B Object-SLAM B ORB-SLAM?

Scene

Klaus
Military Facility
IRIM
CPL 0.32

50C

Memory (in MB)
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Scene
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Distributed Object-based SLAM
with Joint Object Modeling and Mapping

chair 1 chair 2

iIncomplete model Q

each robot will perform object slam with joint object modeling and mapping
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Distributed Object-based SLAM
with Joint Object Modeling and Mapping
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each robot will perform object slam with joint object modeling and mapping
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Distributed Object-based SLAM
with Joint Object Modeling and Mapping

chair V ~ chair? chair 1

chair . .
3 E ) ~ chair 1 chair 2 —
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chair S
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each robot communicates object category and the corresponding models to the other robot
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Distributed Object-based SLAM
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each robot communicates object category and the corresponding models to the other robot
151




Distributed Object-based SLAM
with Joint Object Modeling and Mapping

modeled objects in one robot are matched to the corresponding models from the other robot
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Distributed Object-based SLAM
with Joint Object Modeling and Mapping

Relative pose estimated using 3DMatch is used as the measurement

In inter-robot object-object factor
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Distributed Object-based SLAM
with Joint Object Modeling and Mapping

Factor graph optimized using Distributed Gauss-Seidel Algorithm
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Distributed Object-based SLAM
with Joint Object Modeling and Mapping

-
)
@
@

Optimized estimates can be used to produce fused object models
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Distributed Object-based SLAM
with Joint Object Modeling and Mapping

Trade-off
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Distributed Object-based SLAM
with Joint Object Modeling and Mapping

Trade-off

: No need to store object models for each
Memory Requirements * obiect instance

Increases because object models are

Communication Bandwidth + communicated as well instead of

communicating object labels

Generalizability * Generalizes to unknown object instances
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Experiments (Large-Scale Robot dataset)

Distributed Distributed
Object-SLAM ORB-SLAM2

Klaus (5 robots)

Military Training
Facility (10 robots)

IRIM (11 robots)

157 Object detector is fine-tuned on BigBird dataset



Experiments (Large-Scale Robot dataset)

0.6
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ATE w.r.t ORB-SLAM2 (m)

Klaus Military Training Facility IRIM

Scene

Our approach is nearly as accurate as distributed keyframe
based approach.
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Experiments (Large-Scale Robot dataset)

Communication Requirements Memory Requirements

pOaC @ Dist. Object-SLAM -l Dist: ORB-SLAMZ2 600 @ Dist. Object-SLAM -l Dist. ORB-SLAM2
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Scene Scene

Our approach has much less memory and communication
requirement than distributed keyframe based approach.
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EXxperiments
(Large-Scale handheld dataset)

ATE w.rt ORB-SLAM2 (m)
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Scene

Our approach is nearly as accurate as distributed keyframe
based approach.
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EXxperiments
(Large-Scale handheld dataset)

Communication Requirements Memory Requirements

2000 @ Dist: Object-SLAM i} Dist: ORB-SLAM? & Dist: Object-SLAM —f-Dist- ORB-SLAM2

)
400
20D
D _ S—

RIBA CPL

Memory (in MB)

Communication (in MB)

RIM

Scene Scene

Our approach has much less memory and communication
requirement than distributed keyframe based approach.
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Contributions

An object-based distributed algorithm for cooperative trajectory
estimation

 Reduces the memory requirements and information exchange
among robots.

* [tis as accurate as the centralized estimate.
* |t scales well to large number of robots and is resilient to noise.
 Extended the approach to the case where object models are not

previously known and are jointly optimized within our SLAM
framework.
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Distributed Outlier Rejection
(Future Work)

Investigate distributed implementation of outlier rejection methods*,
so that they can be applied in a multi robot system without requiring all
robots to exchange all measurements.
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Distributed Outlier Rejection
(Future Work)

Investigate distributed implementation of outlier rejection methods*,
so that they can be applied in a multi robot system without requiring all
robots to exchange all measurements.

*Selecting good measurements via |1 relaxation: a convex approach for robust estimation over graphs,
Carlone et al. (IROS 2014)
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Multl Robot Exploration and Mapping
(Future Work)

Autonomous exploration and mapping using a heterogeneous team of robots.
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