
Distributed Object based SLAM
Siddharth Choudhary

Committee Members:
Prof. Henrik I. Christensen (Advisor)

Prof. Frank Dellaert (Co-Advisor)
Prof. John Leonard

Prof. Patricio Vela
Prof. James M. Rehg

Motivation ç√

ç√

ç√

2

Connected Cars

Motivation
ç√

3

Distributed AR/VR

Motivation
ç√

4

Distributed Camera
Modeling the world from internet photo collections

Snavely et al. (IJCV ’07)

Motivation
ç√

4

Distributed Camera
Modeling the world from internet photo collections

Snavely et al. (IJCV ’07)

Motivation ç√

ç√

ç√

ç√

ç√

5

ç√

ç√

Motivation ç√

ç√

ç√

ç√

ç√Fast information gathering
in disaster relief scenarios

5

ç√

ç√

Motivation ç√

ç√

ç√

ç√

ç√Fast information gathering
in disaster relief scenarios

5

ç√

ç√
Efficient coverage and monitoring

Motivation ç√

ç√

ç√

ç√

ç√Fast information gathering
in disaster relief scenarios

5

ç√

ç√
Efficient coverage and monitoring

Appealing alternative to
monolithic single robot systems

Motivation ç√

ç√

ç√

ç√

ç√Fast information gathering
in disaster relief scenarios

Multi Robot Search and Rescue5

ç√

ç√
Efficient coverage and monitoring

Appealing alternative to
monolithic single robot systems

Motivation

Partially funded by ARL Micro Autonomous Systems And Technology (MAST) CTA Project

“To develop autonomous, multifunctional, collaborative ensembles
of agile, mobile microsystems to enhance tactical situational awareness

in urban and complex terrain for small unit operations.”

6

Motivation

“To develop autonomous, multifunctional, collaborative ensembles
of agile, mobile microsystems to enhance tactical situational awareness

in urban and complex terrain for small unit operations.”

• distributed

7

Partially funded by ARL Micro Autonomous Systems And Technology (MAST) CTA Project

Motivation

“To develop autonomous, multifunctional, collaborative ensembles
of agile, mobile microsystems to enhance tactical situational awareness

in urban and complex terrain for small unit operations.”

• distributed
• resource constrained

8

Partially funded by ARL Micro Autonomous Systems And Technology (MAST) CTA Project

Motivation

“To develop autonomous, multifunctional, collaborative ensembles
of agile, mobile microsystems to enhance tactical situational awareness

in urban and complex terrain for small unit operations.”

• distributed
• resource constrained
• mapping

Partially funded by ARL Micro Autonomous Systems And Technology (MAST) CTA Project

9

Goal

Distributed mapping using a team of resource-constrained robots

Partially funded by ARL Micro Autonomous Systems And Technology (MAST) CTA Project

10

Goal

Distributed mapping using a team of resource-constrained robots

Partially funded by ARL Micro Autonomous Systems And Technology (MAST) CTA Project

10

What is distributed mapping?

11

What is distributed mapping?

11

robot ↵

What is distributed mapping?

11

robot �

robot ↵

What is distributed mapping?

11

each robot estimates its own trajectory in the local coordinate frame

robot �

robot ↵

What is distributed mapping?

each robot communicates with the neighboring robots

12

robot �

robot ↵

What is distributed mapping?

each robot communicates with the neighboring robots

12

robot �

robot ↵

What is distributed mapping?

13

each robot optimizes its own trajectory given the new information
from the neighboring robots

robot �

robot ↵

What is distributed mapping?

14

robot �

robot ↵

after the optimization, the resulting trajectory of each robot is globally consistent

Cooperative estimation of 3D robot trajectories from relative pose
measurements, with the following constraints:

1. Communication only occurs during rendezvous.

Problem Statement

Indoor mapping with Jackal robots

15

Cooperative estimation of 3D robot trajectories from relative pose
measurements, with the following constraints:

1. Communication only occurs during rendezvous.

Problem Statement

Indoor mapping with Jackal robots

15

Cooperative estimation of 3D robot trajectories from relative pose
measurements, with the following constraints:

1. Communication only occurs during rendezvous.

2. Data exchange must be minimal (due to limited bandwidth and privacy).

Problem Statement

Multiple users map an area using Google Tango
(courtesy: Simon Lynen)

16

Cooperative estimation of 3D robot trajectories from relative pose
measurements, with the following constraints:

1. Communication only occurs during rendezvous.

2. Data exchange must be minimal (due to limited bandwidth and privacy).

Problem Statement

Multiple users map an area using Google Tango
(courtesy: Simon Lynen)

16

Cooperative estimation of 3D robot trajectories from relative pose
measurements, with the following constraints:

1. Communication only occurs during rendezvous.

2. Data exchange must be minimal (due to limited bandwidth and privacy).

3. Memory required by each robot is minimal.

Problem Statement

17

Contributions

18

Contributions

• Distributed inference algorithm:
split computation of trajectory estimation
algorithm among teammates
(Choudhary et al., ICRA 2016) robot �

robot ↵

y�1 y�2

y�3

y↵1

y↵2

y↵3

y↵4

18

Distributed Trajectory Estimation with Privacy and Communication Constraints: a Two-Stage Distributed Gauss-Seidel Approach
Choudhary et al. (ICRA 2016)

• Distributed inference algorithm:
split computation of trajectory estimation
algorithm among teammates
(Choudhary et al., ICRA 2016) robot �

robot ↵

y�1 y�2

y�3

y↵1

y↵2

y↵3

y↵4

• High level map representation:
teammates reason in terms of objects
(Choudhary et al., ISER 2016)

object
robot trajectories

19

Contributions

Multi Robot Object-based SLAM
Choudhary et al. (ISER 2016)

• Distributed inference algorithm:
split computation of trajectory estimation
algorithm among teammates
(Choudhary et al., ICRA 2016) robot �

robot ↵

y�1 y�2

y�3

y↵1

y↵2

y↵3

y↵4

• High level map representation:
teammates reason in terms of objects
(Choudhary et al., ISER 2016)

object
robot trajectories

19

Contributions

Multi Robot Object-based SLAM
Choudhary et al. (ISER 2016)

Using objects as landmarks in a distributed SLAM framework
and leveraging a state of art distributed optimizer both reduce
the communication bandwidth and the memory used by each
robot, outputs a human understandable map and improves the

robustness and scalability of distributed SLAM.

Thesis Statement

20

Thesis Statement

reduce the communication bandwidth and the memory
outputs a human understandable map

improves the robustness and scalability

Using objects as landmarks
state of art distributed optimizer

distributed SLAM

21

Thesis Statement

reduce the communication bandwidth and the memory

outputs a human understandable map

improves the robustness and scalability

Using objects as landmarks

state of art distributed optimizer

distributed SLAM

1.

2.

3.

+

21

Outline

1. Distributed Gauss-Seidel Approach
(state of art distributed optimizer)

2. Distributed Object-based SLAM with Known Object Models
(using objects as landmarks)

3. Distributed Object-based SLAM with Joint Object Modeling and Mapping
(jointly model objects along with SLAM)

4. Conclusions and Future Work

22

Outline

23

1. Distributed Gauss-Seidel Approach
(state of art distributed optimizer)

2. Distributed Object-based SLAM with Known Object Models
(using objects as landmarks)

3. Distributed Object-based SLAM with Joint Object Modeling and Mapping
(jointly model objects along with SLAM)

4. Conclusions and Future Work

Distributed Trajectory Estimation

24

Distributed Trajectory Estimation
• Roumeliotis and Bekey (TRO 2002)
• Thrun and Liu (ISRR 2003)
• A. Howard (IJRR 2006)
• Carlone et al. (JIRS 2011)

Distributed Filtering

x0 x1 x2

u0 u1

z1 z2

m

Fig. 1. Bayes net for single-robot SLAM. The robot trajectory is indicated
by the sequence x0, x1, x2, x3..., observations by the sequence z1, z2, ...,
and actions by the sequence u0, u1,

a mathematical formalism for the single robot case, then
extend (and approximate) the formalism to handle multi-robot
SLAM. This extended formalism provides the basis for the
on-line SLAM algorithm presented in Section II-D.

A. Single-robot SLAM
The SLAM problem for a single robot is treated as follows.

Let x1:t denote a sequence of robot poses at times 1, 2, ...t, let
z1:t denote a corresponding sequence of observations, and let
u0:t−1 denote the sequence of actions executed by the robot.
Our (intermediate) aim is to compute the posterior probability
p(x1:t,m | z1:t, u0:t−1, x0) over the robot trajectory x1:t and
map m, given some initial pose x0. We write this as the
product of two factors:

p(x1:t,m | z1:t, u0:t−1, x0) =

p(m | x1:t, z1:t, u0:t−1, x0)p(x1:t | z1:t, u0:t−1, x0)
(1)

where the first term is a distribution over possible maps and the
second is a distribution over possible trajectories. The utility
of this expression lies in the fact that the first term can be
computed analytically once the robot trajectory x1:t is known.
Thus, we may approximate the posterior over trajectories and
maps using a particle filter in which each sample represents a
complete robot trajectory, and a separate map is conditioned
on each such sample.
Exploiting the conditional dependencies inherent in the

single-robot SLAM problem (see Figure 1), we construct the
Rao-Blackwellized particle filter as follows. Let each particle
(i) be a tuple ⟨x(i)

t ,m
(i)
t , w

(i)
t ⟩ such that x

(i)
t is the robot

pose at time t, m
(i)
t is the map generated using observations

recorded up to and including time t, and w
(i)
t is the particle

weight. Given some action/observation pair (ut−1, zt), the
filter is updated using:

x
(i)
t = A(ut−1, x

(i)
t−1)

m
(i)
t = M(zt, x

(i)
t) + m

(i)
t−1

w
(i)
t = S(zt, x

(i)
t ,m

(i)
t−1)w

(i)
t−1 (2)

where A, S and M are the action, sensor and map models,
respectively. More specifically: A is an action model that
returns a random pose drawn from the distribution p(x(i)

t |

x1
0 x1

1 x1
2

u1
0 u1

1

z1
1 z1

2

m

x2
0 x2

1 x2
2

u2
0 u2

1

z2
1

z2
2

Fig. 2. Bayes net for multi-robot SLAM with known initial poses. The
trajectories of robots 1 and 2 are indicated by the sequences x1

0
, x1

1
, x1

2
, ...

and x2
0
, x2

1
, x2

2
, ..., respectively. We ignore the dependencies (dashed-lines)

between the observations z2 made by robot 2 and the pose x1 of robot 1
(and vice versa).

x
(i)
t−1, ut−1); S is the sensor model p(zt | x

(i)
t ,m

(i)
t−1); and

M is an incremental map generator that returns a partial
occupancy grid (expressed in log-likelihood form to allow for
linear superposition of grids). The basic intuition captured in
these equations is that particles with self-consistent maps will
be assigned larger weights than particles with inconsistent
maps, and that the latter will ultimately be removed by
resampling.
This approach has some valuable practical characteristics.

It is a bounded-time, bounded-storage algorithm, in which
processing effort and storage requirements scale linearly with
particle count, but are independent of the elapsed time t. It is
also very easy to implement: the sensor model S and action
model A are identical to those used in the standard Monte-
Carlo localization algorithm [8], and the map generator M is
a simple ray-tracing algorithm. The approach does have one
crucial limitation, however: the state space is extremely large
(with hundreds or thousands of dimensions), while the number
of particles is necessarily small (a few hundred to a few
thousand at most). Thus, the filter is a very sparse sampling of
the state space, and convergence is far from guaranteed; this
under-sampling typically manifests itself during loop closure,
when we may find that none of the particles generates a self-
consistent map. In order to make this approach mananageable,
one requires either very good action models [1] or very good
proposal distributions [7]. In this paper, we adopt the former
approach, combining odometry with laser data to produce
“stabilized” odometric pose estimates (see Section III-A).

B. Multi-robot SLAM with known initial poses

The single-robot SLAM formalism can readily be general-
ized to handle multiple robots, provided that the initial robot
poses are known. Consider a pair of robots, whose obser-

24

Distributed Trajectory Estimation

• Andresson and Nygards (ICRA 2008)
• Nerurkar et al. (ICRA 2009)
• Franceschelli and Gasparri (ICRA 2010)
• Kim et al. (ICRA 2010)
• Cunningham et al. (IROS 2010, ICRA 2013)
• Indelman et al. (IJRR 2012)
• Dong et al. (ICRA 2015)
• Paull et al. (ICRA 2015)

Distributed Smoothing

DDF-SAM 2.0: Consistent Distributed Smoothing and Mapping

Alexander Cunningham, Vadim Indelman and Frank Dellaert

Abstract— This paper presents an consistent decentralized

data fusion approach for robust multi-robot SLAM in dan-

gerous, unknown environments. The DDF-SAM 2.0 approach

extends our previous work by combining local and neigh-

borhood information in a single, consistent augmented local

map, without the overly conservative approach to avoiding

information double-counting in the previous DDF-SAM algo-

rithm. We introduce the anti-factor as a means to subtract

information in graphical SLAM systems, and illustrate its use

to both replace information in an incremental solver and to

cancel out neighborhood information from shared summarized

maps. This paper presents and compares three summarization

techniques, with two exact approaches and an approximation.

We evaluated the proposed system in a synthetic example

and show the augmented local system and the associated

summarization technique do not double-count information,

while keeping performance tractable.

I. INTRODUCTION

A key enabling technology for robust multi-robot teams
capable of operation in challenging environments is a percep-
tion system capable of fusing information in a decentralized
manner. The SLAM community has produced substantial
improvements in the quality of robot mapping techniques,
enabling efficient, real-time mapping using a variety of
sensors in single-robot cases. This paper addresses the appli-
cation of these state-of-the-art SLAM techniques to fleets of
small, cheap robots to enable robust multi-robot perception,
extending the sensor horizon of any individual robot. Fig. 1
shows a simple three-robot mapping scenario with commonly
observed map landmarks motivating this approach.

In our previous work on decentralized robot perception
[1], [2], we introduced DDF-SAM (denoted as DDF-SAM
1.0 in this paper), a SLAM paradigm extending Smoothing
and Mapping (SAM) [3] techniques to the Decentralized
Data Fusion (DDF) problem [4] by robots performing local
SLAM and sharing a subset of map variables with neighbors
in the form of summarized maps. The key component of
the approach is the sharing of summarized densities between
robots, allowing for application-specific choices of transmit-
ted information that users can throttle to match the available
communication bandwidth between platforms.

However, DDF-SAM 1.0 has two key shortcomings: 1)
an overly conservative approach for avoiding information
double-counting, and 2) reliance on a batch marginalization
approach for map summarization. The method employed
for avoiding information double-counting enforced a strict

Authors are with the Georgia Institute of Technology,
Atlanta, GA contactable at acunning, indelman,
frank@cc.gatech.edu. This work was partially funded through
the Micro Autonomous Systems and Technology (MAST) Alliance, with
sponsorship from Army Research Labs (ARL).

Fig. 1. Example multi-robot SLAM scenario, showing three robots observ-
ing landmarks (stars), with some landmarks in common. Also illustrated is
factor graph with measurements (edges with filled black circles) and the
trajectory for each platform.

separation between a robot’s local map and it’s neighbor-
hood map comprised of data from neighboring robots -
an approach that avoids double-counting at the expense of
each robot maintaining two separate, but incomplete maps
of its environment. Furthermore, the batch summarization
technique used to marginalize non-shared variables from the
local map performs a computationally expensive and separate
factorization of the entire local system, which increases in
complexity over time and limits scalability. We examine
alternate approaches for summarization, as well as the impact
these approaches have on performance in the full system.

To address these shortcomings, we introduce DDF-SAM
2.0 with the following contributions towards effective de-
centralized perception: 1) the augmented local system as a
replacement for the separate local and neighborhood maps
maintained in DDF-SAM 1.0 to provide a single, consistent
map on each robot blending local and neighborhood informa-
tion, 2) the anti-factor as a tool to avoid double-counting of
neighborhood information by down-dating estimates, and 3)
the derivation and evaluation of three summarization tech-
niques applicable to incremental solving techniques, using
both exact marginalization and approximations.

II. RELATED WORK

While this paper focuses on a graphical-model formulation
of the multi-robot SLAM problem, there is a long history of
related work in distributed inference. As is common through-
out much of the mapping and estimation community, many
techniques employ filtering approaches to perform inference.
Roumeliotis et al. [5] consider an extended Kalman filter
(EKF) framework and perform a decentralized calculation
of the augmented covariance matrix between all the robots
in the group assuming relative pose measurements. Nerurkar

• Roumeliotis and Bekey (TRO 2002)
• Thrun and Liu (ISRR 2003)
• A. Howard (IJRR 2006)
• Carlone et al. (JIRS 2011)

Distributed Filtering

x0 x1 x2

u0 u1

z1 z2

m

Fig. 1. Bayes net for single-robot SLAM. The robot trajectory is indicated
by the sequence x0, x1, x2, x3..., observations by the sequence z1, z2, ...,
and actions by the sequence u0, u1,

a mathematical formalism for the single robot case, then
extend (and approximate) the formalism to handle multi-robot
SLAM. This extended formalism provides the basis for the
on-line SLAM algorithm presented in Section II-D.

A. Single-robot SLAM
The SLAM problem for a single robot is treated as follows.

Let x1:t denote a sequence of robot poses at times 1, 2, ...t, let
z1:t denote a corresponding sequence of observations, and let
u0:t−1 denote the sequence of actions executed by the robot.
Our (intermediate) aim is to compute the posterior probability
p(x1:t,m | z1:t, u0:t−1, x0) over the robot trajectory x1:t and
map m, given some initial pose x0. We write this as the
product of two factors:

p(x1:t,m | z1:t, u0:t−1, x0) =

p(m | x1:t, z1:t, u0:t−1, x0)p(x1:t | z1:t, u0:t−1, x0)
(1)

where the first term is a distribution over possible maps and the
second is a distribution over possible trajectories. The utility
of this expression lies in the fact that the first term can be
computed analytically once the robot trajectory x1:t is known.
Thus, we may approximate the posterior over trajectories and
maps using a particle filter in which each sample represents a
complete robot trajectory, and a separate map is conditioned
on each such sample.
Exploiting the conditional dependencies inherent in the

single-robot SLAM problem (see Figure 1), we construct the
Rao-Blackwellized particle filter as follows. Let each particle
(i) be a tuple ⟨x(i)

t ,m
(i)
t , w

(i)
t ⟩ such that x

(i)
t is the robot

pose at time t, m
(i)
t is the map generated using observations

recorded up to and including time t, and w
(i)
t is the particle

weight. Given some action/observation pair (ut−1, zt), the
filter is updated using:

x
(i)
t = A(ut−1, x

(i)
t−1)

m
(i)
t = M(zt, x

(i)
t) + m

(i)
t−1

w
(i)
t = S(zt, x

(i)
t ,m

(i)
t−1)w

(i)
t−1 (2)

where A, S and M are the action, sensor and map models,
respectively. More specifically: A is an action model that
returns a random pose drawn from the distribution p(x(i)

t |

x1
0 x1

1 x1
2

u1
0 u1

1

z1
1 z1

2

m

x2
0 x2

1 x2
2

u2
0 u2

1

z2
1

z2
2

Fig. 2. Bayes net for multi-robot SLAM with known initial poses. The
trajectories of robots 1 and 2 are indicated by the sequences x1

0
, x1

1
, x1

2
, ...

and x2
0
, x2

1
, x2

2
, ..., respectively. We ignore the dependencies (dashed-lines)

between the observations z2 made by robot 2 and the pose x1 of robot 1
(and vice versa).

x
(i)
t−1, ut−1); S is the sensor model p(zt | x

(i)
t ,m

(i)
t−1); and

M is an incremental map generator that returns a partial
occupancy grid (expressed in log-likelihood form to allow for
linear superposition of grids). The basic intuition captured in
these equations is that particles with self-consistent maps will
be assigned larger weights than particles with inconsistent
maps, and that the latter will ultimately be removed by
resampling.
This approach has some valuable practical characteristics.

It is a bounded-time, bounded-storage algorithm, in which
processing effort and storage requirements scale linearly with
particle count, but are independent of the elapsed time t. It is
also very easy to implement: the sensor model S and action
model A are identical to those used in the standard Monte-
Carlo localization algorithm [8], and the map generator M is
a simple ray-tracing algorithm. The approach does have one
crucial limitation, however: the state space is extremely large
(with hundreds or thousands of dimensions), while the number
of particles is necessarily small (a few hundred to a few
thousand at most). Thus, the filter is a very sparse sampling of
the state space, and convergence is far from guaranteed; this
under-sampling typically manifests itself during loop closure,
when we may find that none of the particles generates a self-
consistent map. In order to make this approach mananageable,
one requires either very good action models [1] or very good
proposal distributions [7]. In this paper, we adopt the former
approach, combining odometry with laser data to produce
“stabilized” odometric pose estimates (see Section III-A).

B. Multi-robot SLAM with known initial poses

The single-robot SLAM formalism can readily be general-
ized to handle multiple robots, provided that the initial robot
poses are known. Consider a pair of robots, whose obser-

24

Distributed Trajectory Estimation

• Andresson and Nygards (ICRA 2008)
• Nerurkar et al. (ICRA 2009)
• Franceschelli and Gasparri (ICRA 2010)
• Kim et al. (ICRA 2010)
• Cunningham et al. (IROS 2010, ICRA 2013)
• Indelman et al. (IJRR 2012)
• Dong et al. (ICRA 2015)
• Paull et al. (ICRA 2015)

Distributed Smoothing

DDF-SAM 2.0: Consistent Distributed Smoothing and Mapping

Alexander Cunningham, Vadim Indelman and Frank Dellaert

Abstract— This paper presents an consistent decentralized

data fusion approach for robust multi-robot SLAM in dan-

gerous, unknown environments. The DDF-SAM 2.0 approach

extends our previous work by combining local and neigh-

borhood information in a single, consistent augmented local

map, without the overly conservative approach to avoiding

information double-counting in the previous DDF-SAM algo-

rithm. We introduce the anti-factor as a means to subtract

information in graphical SLAM systems, and illustrate its use

to both replace information in an incremental solver and to

cancel out neighborhood information from shared summarized

maps. This paper presents and compares three summarization

techniques, with two exact approaches and an approximation.

We evaluated the proposed system in a synthetic example

and show the augmented local system and the associated

summarization technique do not double-count information,

while keeping performance tractable.

I. INTRODUCTION

A key enabling technology for robust multi-robot teams
capable of operation in challenging environments is a percep-
tion system capable of fusing information in a decentralized
manner. The SLAM community has produced substantial
improvements in the quality of robot mapping techniques,
enabling efficient, real-time mapping using a variety of
sensors in single-robot cases. This paper addresses the appli-
cation of these state-of-the-art SLAM techniques to fleets of
small, cheap robots to enable robust multi-robot perception,
extending the sensor horizon of any individual robot. Fig. 1
shows a simple three-robot mapping scenario with commonly
observed map landmarks motivating this approach.

In our previous work on decentralized robot perception
[1], [2], we introduced DDF-SAM (denoted as DDF-SAM
1.0 in this paper), a SLAM paradigm extending Smoothing
and Mapping (SAM) [3] techniques to the Decentralized
Data Fusion (DDF) problem [4] by robots performing local
SLAM and sharing a subset of map variables with neighbors
in the form of summarized maps. The key component of
the approach is the sharing of summarized densities between
robots, allowing for application-specific choices of transmit-
ted information that users can throttle to match the available
communication bandwidth between platforms.

However, DDF-SAM 1.0 has two key shortcomings: 1)
an overly conservative approach for avoiding information
double-counting, and 2) reliance on a batch marginalization
approach for map summarization. The method employed
for avoiding information double-counting enforced a strict

Authors are with the Georgia Institute of Technology,
Atlanta, GA contactable at acunning, indelman,
frank@cc.gatech.edu. This work was partially funded through
the Micro Autonomous Systems and Technology (MAST) Alliance, with
sponsorship from Army Research Labs (ARL).

Fig. 1. Example multi-robot SLAM scenario, showing three robots observ-
ing landmarks (stars), with some landmarks in common. Also illustrated is
factor graph with measurements (edges with filled black circles) and the
trajectory for each platform.

separation between a robot’s local map and it’s neighbor-
hood map comprised of data from neighboring robots -
an approach that avoids double-counting at the expense of
each robot maintaining two separate, but incomplete maps
of its environment. Furthermore, the batch summarization
technique used to marginalize non-shared variables from the
local map performs a computationally expensive and separate
factorization of the entire local system, which increases in
complexity over time and limits scalability. We examine
alternate approaches for summarization, as well as the impact
these approaches have on performance in the full system.

To address these shortcomings, we introduce DDF-SAM
2.0 with the following contributions towards effective de-
centralized perception: 1) the augmented local system as a
replacement for the separate local and neighborhood maps
maintained in DDF-SAM 1.0 to provide a single, consistent
map on each robot blending local and neighborhood informa-
tion, 2) the anti-factor as a tool to avoid double-counting of
neighborhood information by down-dating estimates, and 3)
the derivation and evaluation of three summarization tech-
niques applicable to incremental solving techniques, using
both exact marginalization and approximations.

II. RELATED WORK

While this paper focuses on a graphical-model formulation
of the multi-robot SLAM problem, there is a long history of
related work in distributed inference. As is common through-
out much of the mapping and estimation community, many
techniques employ filtering approaches to perform inference.
Roumeliotis et al. [5] consider an extended Kalman filter
(EKF) framework and perform a decentralized calculation
of the augmented covariance matrix between all the robots
in the group assuming relative pose measurements. Nerurkar

• Roumeliotis and Bekey (TRO 2002)
• Thrun and Liu (ISRR 2003)
• A. Howard (IJRR 2006)
• Carlone et al. (JIRS 2011)

Distributed Filtering

x0 x1 x2

u0 u1

z1 z2

m

Fig. 1. Bayes net for single-robot SLAM. The robot trajectory is indicated
by the sequence x0, x1, x2, x3..., observations by the sequence z1, z2, ...,
and actions by the sequence u0, u1,

a mathematical formalism for the single robot case, then
extend (and approximate) the formalism to handle multi-robot
SLAM. This extended formalism provides the basis for the
on-line SLAM algorithm presented in Section II-D.

A. Single-robot SLAM
The SLAM problem for a single robot is treated as follows.

Let x1:t denote a sequence of robot poses at times 1, 2, ...t, let
z1:t denote a corresponding sequence of observations, and let
u0:t−1 denote the sequence of actions executed by the robot.
Our (intermediate) aim is to compute the posterior probability
p(x1:t,m | z1:t, u0:t−1, x0) over the robot trajectory x1:t and
map m, given some initial pose x0. We write this as the
product of two factors:

p(x1:t,m | z1:t, u0:t−1, x0) =

p(m | x1:t, z1:t, u0:t−1, x0)p(x1:t | z1:t, u0:t−1, x0)
(1)

where the first term is a distribution over possible maps and the
second is a distribution over possible trajectories. The utility
of this expression lies in the fact that the first term can be
computed analytically once the robot trajectory x1:t is known.
Thus, we may approximate the posterior over trajectories and
maps using a particle filter in which each sample represents a
complete robot trajectory, and a separate map is conditioned
on each such sample.
Exploiting the conditional dependencies inherent in the

single-robot SLAM problem (see Figure 1), we construct the
Rao-Blackwellized particle filter as follows. Let each particle
(i) be a tuple ⟨x(i)

t ,m
(i)
t , w

(i)
t ⟩ such that x

(i)
t is the robot

pose at time t, m
(i)
t is the map generated using observations

recorded up to and including time t, and w
(i)
t is the particle

weight. Given some action/observation pair (ut−1, zt), the
filter is updated using:

x
(i)
t = A(ut−1, x

(i)
t−1)

m
(i)
t = M(zt, x

(i)
t) + m

(i)
t−1

w
(i)
t = S(zt, x

(i)
t ,m

(i)
t−1)w

(i)
t−1 (2)

where A, S and M are the action, sensor and map models,
respectively. More specifically: A is an action model that
returns a random pose drawn from the distribution p(x(i)

t |

x1
0 x1

1 x1
2

u1
0 u1

1

z1
1 z1

2

m

x2
0 x2

1 x2
2

u2
0 u2

1

z2
1

z2
2

Fig. 2. Bayes net for multi-robot SLAM with known initial poses. The
trajectories of robots 1 and 2 are indicated by the sequences x1

0
, x1

1
, x1

2
, ...

and x2
0
, x2

1
, x2

2
, ..., respectively. We ignore the dependencies (dashed-lines)

between the observations z2 made by robot 2 and the pose x1 of robot 1
(and vice versa).

x
(i)
t−1, ut−1); S is the sensor model p(zt | x

(i)
t ,m

(i)
t−1); and

M is an incremental map generator that returns a partial
occupancy grid (expressed in log-likelihood form to allow for
linear superposition of grids). The basic intuition captured in
these equations is that particles with self-consistent maps will
be assigned larger weights than particles with inconsistent
maps, and that the latter will ultimately be removed by
resampling.
This approach has some valuable practical characteristics.

It is a bounded-time, bounded-storage algorithm, in which
processing effort and storage requirements scale linearly with
particle count, but are independent of the elapsed time t. It is
also very easy to implement: the sensor model S and action
model A are identical to those used in the standard Monte-
Carlo localization algorithm [8], and the map generator M is
a simple ray-tracing algorithm. The approach does have one
crucial limitation, however: the state space is extremely large
(with hundreds or thousands of dimensions), while the number
of particles is necessarily small (a few hundred to a few
thousand at most). Thus, the filter is a very sparse sampling of
the state space, and convergence is far from guaranteed; this
under-sampling typically manifests itself during loop closure,
when we may find that none of the particles generates a self-
consistent map. In order to make this approach mananageable,
one requires either very good action models [1] or very good
proposal distributions [7]. In this paper, we adopt the former
approach, combining odometry with laser data to produce
“stabilized” odometric pose estimates (see Section III-A).

B. Multi-robot SLAM with known initial poses

The single-robot SLAM formalism can readily be general-
ized to handle multiple robots, provided that the initial robot
poses are known. Consider a pair of robots, whose obser-

24

• Leonard and Feder (JOE 2001)
• Leonard and Newman (IJCAI 2003)
• Bosse et al (IJRR 2004)
• Ni et al. (ICRA 2007)

Submapping
l1

l2

l3

l4

l5

l6

l7

l8

x0 x1 x2 x3

Fig. 4. The factor graph in Figure 2 is partitioned into the two submaps.
Each submap is indicated by a colored rectangle boundary.

Fig. 5. The block structure of the Jacobian in Figure 3 with rows ordered
according to the measurement types and the submap indices. From top to
bottom, the shaded areas represent Z1, Z2, and Z1,2.

vertical cut to our example problem to generate two submaps
M1 and M2.

We categorize measurements as either intra-measurements
Z

p

or inter-measurements Z
p,q

. Intra-measurements Z
p

are the set of measurements that involve only the
nodes in submap M

p

, and the inter-measurements are
the set Z

p,q

that have dependencies on both M
p

and
M

q

. In Figure 4, the inter-measurements are Z1,2 =
{u

x1,x2 , zx1,l5 , zx1,l6 , zx2,l3 , zx2,l4}, and all other measure-
ments make up the intra-measurements Z1 and Z2. The intra-
measurements are iteratively relinearized when aligning the
submaps locally. The linearization of the intra-measurements
is then fixed when optimizing the separator, and only the
inter-measurements are linearized during each iteration.

From a matrix point of view, the rows of the block-
structure A0 can be ordered in a way such that Z1 and Z2

(rows 1 to 14 in Figure 5) are placed above Z1,2 (rows 15 to
19). As we are going to optimize the submaps one by one, the
intra-measurements (rows 1 to 14) are internally ordered with
respect to their submap indices p, e.g., first Z1 (red-shaded
area) and then Z2 (blue-shaded area).

We also define boundary variables and non-boundary
variables with respect to the roles that variables play in the
measurements. Variables are boundary if they are involved in

Fig. 6. The subsystems in two submaps. Their columns Vp and Sp are
ordered by AMD and covered by red and blue shading.

at least one inter-measurement and non-boundary otherwise.
Thus, each submap M

p

is made up of two sets: a non-
boundary variable set V

p

and a boundary variable set S
p

,
such that

M
p

= V
p

[S
p

(6)

In Figure 4, we have V1 = {x0; l1; l2}, V2 = {x3; l7; l8},
S1 = {x1; l3; l4}, and S2 = {x2; l5; l6}.

B. Submap Optimization

Each submap M
p

can be optimized locally and indepen-
dently only using intra-measurements. The optimization of
every single submap is simply a small-scale

p
SAM problem

which can be written as

A
p

�M
p

= c
p

(7)

where A
p

and c
p

are corresponding parts of A and c in
Equation 5 and contain the columns only involved in Z

p

.
In order to allow re-use of the linearization point of the

intra-measurements, the columns of A
p

corresponding to the
boundary variables are ordered last, as follows:

⇥

A
Vp A

Sp

⇤

�V
p

�S
p

�

= c
p

(8)

As always, choosing a good column ordering is important, es-
pecially if the submaps contain many variables. As discussed
in Section II, we use AMD to obtain a good ordering of both
V

p

and S
p

. The block-structure of the re-ordered matrices A
p

in Equation 7 are shown in Figure 6.
Note that after computing the Hessian and its Cholesky

factorization, the system of equations being solved is

R
p

T
p

0 U
p

�

�V
p

�S
p

�

=

d
p

d
Up

�

where
�

d
p

; d
Up

is obtained by solving

R
p

T
p

0 U
p

�

T

d
p

d
Up

�

= c
p

Since the separating set variables correspond to the lower
right block of the Cholesky factor, the system of equations
involving only variables in the boundary variable set can be
extracted trivially for later use in the separator optimization:

U
p

�S
p

= d
Up

Distributed Trajectory Estimation

• Andresson and Nygards (ICRA 2008)
• Nerurkar et al. (ICRA 2009)
• Franceschelli and Gasparri (ICRA 2010)
• Kim et al. (ICRA 2010)
• Cunningham et al. (IROS 2010, ICRA 2013)
• Indelman et al. (IJRR 2012)
• Dong et al. (ICRA 2015)
• Paull et al. (ICRA 2015)

Distributed Smoothing

DDF-SAM 2.0: Consistent Distributed Smoothing and Mapping

Alexander Cunningham, Vadim Indelman and Frank Dellaert

Abstract— This paper presents an consistent decentralized

data fusion approach for robust multi-robot SLAM in dan-

gerous, unknown environments. The DDF-SAM 2.0 approach

extends our previous work by combining local and neigh-

borhood information in a single, consistent augmented local

map, without the overly conservative approach to avoiding

information double-counting in the previous DDF-SAM algo-

rithm. We introduce the anti-factor as a means to subtract

information in graphical SLAM systems, and illustrate its use

to both replace information in an incremental solver and to

cancel out neighborhood information from shared summarized

maps. This paper presents and compares three summarization

techniques, with two exact approaches and an approximation.

We evaluated the proposed system in a synthetic example

and show the augmented local system and the associated

summarization technique do not double-count information,

while keeping performance tractable.

I. INTRODUCTION

A key enabling technology for robust multi-robot teams
capable of operation in challenging environments is a percep-
tion system capable of fusing information in a decentralized
manner. The SLAM community has produced substantial
improvements in the quality of robot mapping techniques,
enabling efficient, real-time mapping using a variety of
sensors in single-robot cases. This paper addresses the appli-
cation of these state-of-the-art SLAM techniques to fleets of
small, cheap robots to enable robust multi-robot perception,
extending the sensor horizon of any individual robot. Fig. 1
shows a simple three-robot mapping scenario with commonly
observed map landmarks motivating this approach.

In our previous work on decentralized robot perception
[1], [2], we introduced DDF-SAM (denoted as DDF-SAM
1.0 in this paper), a SLAM paradigm extending Smoothing
and Mapping (SAM) [3] techniques to the Decentralized
Data Fusion (DDF) problem [4] by robots performing local
SLAM and sharing a subset of map variables with neighbors
in the form of summarized maps. The key component of
the approach is the sharing of summarized densities between
robots, allowing for application-specific choices of transmit-
ted information that users can throttle to match the available
communication bandwidth between platforms.

However, DDF-SAM 1.0 has two key shortcomings: 1)
an overly conservative approach for avoiding information
double-counting, and 2) reliance on a batch marginalization
approach for map summarization. The method employed
for avoiding information double-counting enforced a strict

Authors are with the Georgia Institute of Technology,
Atlanta, GA contactable at acunning, indelman,
frank@cc.gatech.edu. This work was partially funded through
the Micro Autonomous Systems and Technology (MAST) Alliance, with
sponsorship from Army Research Labs (ARL).

Fig. 1. Example multi-robot SLAM scenario, showing three robots observ-
ing landmarks (stars), with some landmarks in common. Also illustrated is
factor graph with measurements (edges with filled black circles) and the
trajectory for each platform.

separation between a robot’s local map and it’s neighbor-
hood map comprised of data from neighboring robots -
an approach that avoids double-counting at the expense of
each robot maintaining two separate, but incomplete maps
of its environment. Furthermore, the batch summarization
technique used to marginalize non-shared variables from the
local map performs a computationally expensive and separate
factorization of the entire local system, which increases in
complexity over time and limits scalability. We examine
alternate approaches for summarization, as well as the impact
these approaches have on performance in the full system.

To address these shortcomings, we introduce DDF-SAM
2.0 with the following contributions towards effective de-
centralized perception: 1) the augmented local system as a
replacement for the separate local and neighborhood maps
maintained in DDF-SAM 1.0 to provide a single, consistent
map on each robot blending local and neighborhood informa-
tion, 2) the anti-factor as a tool to avoid double-counting of
neighborhood information by down-dating estimates, and 3)
the derivation and evaluation of three summarization tech-
niques applicable to incremental solving techniques, using
both exact marginalization and approximations.

II. RELATED WORK

While this paper focuses on a graphical-model formulation
of the multi-robot SLAM problem, there is a long history of
related work in distributed inference. As is common through-
out much of the mapping and estimation community, many
techniques employ filtering approaches to perform inference.
Roumeliotis et al. [5] consider an extended Kalman filter
(EKF) framework and perform a decentralized calculation
of the augmented covariance matrix between all the robots
in the group assuming relative pose measurements. Nerurkar

• Roumeliotis and Bekey (TRO 2002)
• Thrun and Liu (ISRR 2003)
• A. Howard (IJRR 2006)
• Carlone et al. (JIRS 2011)

Distributed Filtering

x0 x1 x2

u0 u1

z1 z2

m

Fig. 1. Bayes net for single-robot SLAM. The robot trajectory is indicated
by the sequence x0, x1, x2, x3..., observations by the sequence z1, z2, ...,
and actions by the sequence u0, u1,

a mathematical formalism for the single robot case, then
extend (and approximate) the formalism to handle multi-robot
SLAM. This extended formalism provides the basis for the
on-line SLAM algorithm presented in Section II-D.

A. Single-robot SLAM
The SLAM problem for a single robot is treated as follows.

Let x1:t denote a sequence of robot poses at times 1, 2, ...t, let
z1:t denote a corresponding sequence of observations, and let
u0:t−1 denote the sequence of actions executed by the robot.
Our (intermediate) aim is to compute the posterior probability
p(x1:t,m | z1:t, u0:t−1, x0) over the robot trajectory x1:t and
map m, given some initial pose x0. We write this as the
product of two factors:

p(x1:t,m | z1:t, u0:t−1, x0) =

p(m | x1:t, z1:t, u0:t−1, x0)p(x1:t | z1:t, u0:t−1, x0)
(1)

where the first term is a distribution over possible maps and the
second is a distribution over possible trajectories. The utility
of this expression lies in the fact that the first term can be
computed analytically once the robot trajectory x1:t is known.
Thus, we may approximate the posterior over trajectories and
maps using a particle filter in which each sample represents a
complete robot trajectory, and a separate map is conditioned
on each such sample.
Exploiting the conditional dependencies inherent in the

single-robot SLAM problem (see Figure 1), we construct the
Rao-Blackwellized particle filter as follows. Let each particle
(i) be a tuple ⟨x(i)

t ,m
(i)
t , w

(i)
t ⟩ such that x

(i)
t is the robot

pose at time t, m
(i)
t is the map generated using observations

recorded up to and including time t, and w
(i)
t is the particle

weight. Given some action/observation pair (ut−1, zt), the
filter is updated using:

x
(i)
t = A(ut−1, x

(i)
t−1)

m
(i)
t = M(zt, x

(i)
t) + m

(i)
t−1

w
(i)
t = S(zt, x

(i)
t ,m

(i)
t−1)w

(i)
t−1 (2)

where A, S and M are the action, sensor and map models,
respectively. More specifically: A is an action model that
returns a random pose drawn from the distribution p(x(i)

t |

x1
0 x1

1 x1
2

u1
0 u1

1

z1
1 z1

2

m

x2
0 x2

1 x2
2

u2
0 u2

1

z2
1

z2
2

Fig. 2. Bayes net for multi-robot SLAM with known initial poses. The
trajectories of robots 1 and 2 are indicated by the sequences x1

0
, x1

1
, x1

2
, ...

and x2
0
, x2

1
, x2

2
, ..., respectively. We ignore the dependencies (dashed-lines)

between the observations z2 made by robot 2 and the pose x1 of robot 1
(and vice versa).

x
(i)
t−1, ut−1); S is the sensor model p(zt | x

(i)
t ,m

(i)
t−1); and

M is an incremental map generator that returns a partial
occupancy grid (expressed in log-likelihood form to allow for
linear superposition of grids). The basic intuition captured in
these equations is that particles with self-consistent maps will
be assigned larger weights than particles with inconsistent
maps, and that the latter will ultimately be removed by
resampling.
This approach has some valuable practical characteristics.

It is a bounded-time, bounded-storage algorithm, in which
processing effort and storage requirements scale linearly with
particle count, but are independent of the elapsed time t. It is
also very easy to implement: the sensor model S and action
model A are identical to those used in the standard Monte-
Carlo localization algorithm [8], and the map generator M is
a simple ray-tracing algorithm. The approach does have one
crucial limitation, however: the state space is extremely large
(with hundreds or thousands of dimensions), while the number
of particles is necessarily small (a few hundred to a few
thousand at most). Thus, the filter is a very sparse sampling of
the state space, and convergence is far from guaranteed; this
under-sampling typically manifests itself during loop closure,
when we may find that none of the particles generates a self-
consistent map. In order to make this approach mananageable,
one requires either very good action models [1] or very good
proposal distributions [7]. In this paper, we adopt the former
approach, combining odometry with laser data to produce
“stabilized” odometric pose estimates (see Section III-A).

B. Multi-robot SLAM with known initial poses

The single-robot SLAM formalism can readily be general-
ized to handle multiple robots, provided that the initial robot
poses are known. Consider a pair of robots, whose obser-

• Anderson et al. (SIAM Journal of Disc. Math. 2010)
• Calafiore et al. (TSMC 2012)
• Barooah and Hespanha (Control Systems Magazine 2007)
• Aragues et al. (System and Control Letters 2012)
• Thunberg et al. (CDC 2011)
• Tron and Vidal (CDC 2009)

Sensor Network Localization

24

• Leonard and Feder (JOE 2001)
• Leonard and Newman (IJCAI 2003)
• Bosse et al (IJRR 2004)
• Ni et al. (ICRA 2007)

Submapping
l1

l2

l3

l4

l5

l6

l7

l8

x0 x1 x2 x3

Fig. 4. The factor graph in Figure 2 is partitioned into the two submaps.
Each submap is indicated by a colored rectangle boundary.

Fig. 5. The block structure of the Jacobian in Figure 3 with rows ordered
according to the measurement types and the submap indices. From top to
bottom, the shaded areas represent Z1, Z2, and Z1,2.

vertical cut to our example problem to generate two submaps
M1 and M2.

We categorize measurements as either intra-measurements
Z

p

or inter-measurements Z
p,q

. Intra-measurements Z
p

are the set of measurements that involve only the
nodes in submap M

p

, and the inter-measurements are
the set Z

p,q

that have dependencies on both M
p

and
M

q

. In Figure 4, the inter-measurements are Z1,2 =
{u

x1,x2 , zx1,l5 , zx1,l6 , zx2,l3 , zx2,l4}, and all other measure-
ments make up the intra-measurements Z1 and Z2. The intra-
measurements are iteratively relinearized when aligning the
submaps locally. The linearization of the intra-measurements
is then fixed when optimizing the separator, and only the
inter-measurements are linearized during each iteration.

From a matrix point of view, the rows of the block-
structure A0 can be ordered in a way such that Z1 and Z2

(rows 1 to 14 in Figure 5) are placed above Z1,2 (rows 15 to
19). As we are going to optimize the submaps one by one, the
intra-measurements (rows 1 to 14) are internally ordered with
respect to their submap indices p, e.g., first Z1 (red-shaded
area) and then Z2 (blue-shaded area).

We also define boundary variables and non-boundary
variables with respect to the roles that variables play in the
measurements. Variables are boundary if they are involved in

Fig. 6. The subsystems in two submaps. Their columns Vp and Sp are
ordered by AMD and covered by red and blue shading.

at least one inter-measurement and non-boundary otherwise.
Thus, each submap M

p

is made up of two sets: a non-
boundary variable set V

p

and a boundary variable set S
p

,
such that

M
p

= V
p

[S
p

(6)

In Figure 4, we have V1 = {x0; l1; l2}, V2 = {x3; l7; l8},
S1 = {x1; l3; l4}, and S2 = {x2; l5; l6}.

B. Submap Optimization

Each submap M
p

can be optimized locally and indepen-
dently only using intra-measurements. The optimization of
every single submap is simply a small-scale

p
SAM problem

which can be written as

A
p

�M
p

= c
p

(7)

where A
p

and c
p

are corresponding parts of A and c in
Equation 5 and contain the columns only involved in Z

p

.
In order to allow re-use of the linearization point of the

intra-measurements, the columns of A
p

corresponding to the
boundary variables are ordered last, as follows:

⇥

A
Vp A

Sp

⇤

�V
p

�S
p

�

= c
p

(8)

As always, choosing a good column ordering is important, es-
pecially if the submaps contain many variables. As discussed
in Section II, we use AMD to obtain a good ordering of both
V

p

and S
p

. The block-structure of the re-ordered matrices A
p

in Equation 7 are shown in Figure 6.
Note that after computing the Hessian and its Cholesky

factorization, the system of equations being solved is

R
p

T
p

0 U
p

�

�V
p

�S
p

�

=

d
p

d
Up

�

where
�

d
p

; d
Up

is obtained by solving

R
p

T
p

0 U
p

�

T

d
p

d
Up

�

= c
p

Since the separating set variables correspond to the lower
right block of the Cholesky factor, the system of equations
involving only variables in the boundary variable set can be
extracted trivially for later use in the separator optimization:

U
p

�S
p

= d
Up

Distributed Trajectory Estimation

• Andresson and Nygards (ICRA 2008)
• Nerurkar et al. (ICRA 2009)
• Franceschelli and Gasparri (ICRA 2010)
• Kim et al. (ICRA 2010)
• Cunningham et al. (IROS 2010, ICRA 2013)
• Indelman et al. (IJRR 2012)
• Dong et al. (ICRA 2015)
• Paull et al. (ICRA 2015)

Distributed Smoothing

DDF-SAM 2.0: Consistent Distributed Smoothing and Mapping

Alexander Cunningham, Vadim Indelman and Frank Dellaert

Abstract— This paper presents an consistent decentralized

data fusion approach for robust multi-robot SLAM in dan-

gerous, unknown environments. The DDF-SAM 2.0 approach

extends our previous work by combining local and neigh-

borhood information in a single, consistent augmented local

map, without the overly conservative approach to avoiding

information double-counting in the previous DDF-SAM algo-

rithm. We introduce the anti-factor as a means to subtract

information in graphical SLAM systems, and illustrate its use

to both replace information in an incremental solver and to

cancel out neighborhood information from shared summarized

maps. This paper presents and compares three summarization

techniques, with two exact approaches and an approximation.

We evaluated the proposed system in a synthetic example

and show the augmented local system and the associated

summarization technique do not double-count information,

while keeping performance tractable.

I. INTRODUCTION

A key enabling technology for robust multi-robot teams
capable of operation in challenging environments is a percep-
tion system capable of fusing information in a decentralized
manner. The SLAM community has produced substantial
improvements in the quality of robot mapping techniques,
enabling efficient, real-time mapping using a variety of
sensors in single-robot cases. This paper addresses the appli-
cation of these state-of-the-art SLAM techniques to fleets of
small, cheap robots to enable robust multi-robot perception,
extending the sensor horizon of any individual robot. Fig. 1
shows a simple three-robot mapping scenario with commonly
observed map landmarks motivating this approach.

In our previous work on decentralized robot perception
[1], [2], we introduced DDF-SAM (denoted as DDF-SAM
1.0 in this paper), a SLAM paradigm extending Smoothing
and Mapping (SAM) [3] techniques to the Decentralized
Data Fusion (DDF) problem [4] by robots performing local
SLAM and sharing a subset of map variables with neighbors
in the form of summarized maps. The key component of
the approach is the sharing of summarized densities between
robots, allowing for application-specific choices of transmit-
ted information that users can throttle to match the available
communication bandwidth between platforms.

However, DDF-SAM 1.0 has two key shortcomings: 1)
an overly conservative approach for avoiding information
double-counting, and 2) reliance on a batch marginalization
approach for map summarization. The method employed
for avoiding information double-counting enforced a strict

Authors are with the Georgia Institute of Technology,
Atlanta, GA contactable at acunning, indelman,
frank@cc.gatech.edu. This work was partially funded through
the Micro Autonomous Systems and Technology (MAST) Alliance, with
sponsorship from Army Research Labs (ARL).

Fig. 1. Example multi-robot SLAM scenario, showing three robots observ-
ing landmarks (stars), with some landmarks in common. Also illustrated is
factor graph with measurements (edges with filled black circles) and the
trajectory for each platform.

separation between a robot’s local map and it’s neighbor-
hood map comprised of data from neighboring robots -
an approach that avoids double-counting at the expense of
each robot maintaining two separate, but incomplete maps
of its environment. Furthermore, the batch summarization
technique used to marginalize non-shared variables from the
local map performs a computationally expensive and separate
factorization of the entire local system, which increases in
complexity over time and limits scalability. We examine
alternate approaches for summarization, as well as the impact
these approaches have on performance in the full system.

To address these shortcomings, we introduce DDF-SAM
2.0 with the following contributions towards effective de-
centralized perception: 1) the augmented local system as a
replacement for the separate local and neighborhood maps
maintained in DDF-SAM 1.0 to provide a single, consistent
map on each robot blending local and neighborhood informa-
tion, 2) the anti-factor as a tool to avoid double-counting of
neighborhood information by down-dating estimates, and 3)
the derivation and evaluation of three summarization tech-
niques applicable to incremental solving techniques, using
both exact marginalization and approximations.

II. RELATED WORK

While this paper focuses on a graphical-model formulation
of the multi-robot SLAM problem, there is a long history of
related work in distributed inference. As is common through-
out much of the mapping and estimation community, many
techniques employ filtering approaches to perform inference.
Roumeliotis et al. [5] consider an extended Kalman filter
(EKF) framework and perform a decentralized calculation
of the augmented covariance matrix between all the robots
in the group assuming relative pose measurements. Nerurkar

• Roumeliotis and Bekey (TRO 2002)
• Thrun and Liu (ISRR 2003)
• A. Howard (IJRR 2006)
• Carlone et al. (JIRS 2011)

Distributed Filtering

x0 x1 x2

u0 u1

z1 z2

m

Fig. 1. Bayes net for single-robot SLAM. The robot trajectory is indicated
by the sequence x0, x1, x2, x3..., observations by the sequence z1, z2, ...,
and actions by the sequence u0, u1,

a mathematical formalism for the single robot case, then
extend (and approximate) the formalism to handle multi-robot
SLAM. This extended formalism provides the basis for the
on-line SLAM algorithm presented in Section II-D.

A. Single-robot SLAM
The SLAM problem for a single robot is treated as follows.

Let x1:t denote a sequence of robot poses at times 1, 2, ...t, let
z1:t denote a corresponding sequence of observations, and let
u0:t−1 denote the sequence of actions executed by the robot.
Our (intermediate) aim is to compute the posterior probability
p(x1:t,m | z1:t, u0:t−1, x0) over the robot trajectory x1:t and
map m, given some initial pose x0. We write this as the
product of two factors:

p(x1:t,m | z1:t, u0:t−1, x0) =

p(m | x1:t, z1:t, u0:t−1, x0)p(x1:t | z1:t, u0:t−1, x0)
(1)

where the first term is a distribution over possible maps and the
second is a distribution over possible trajectories. The utility
of this expression lies in the fact that the first term can be
computed analytically once the robot trajectory x1:t is known.
Thus, we may approximate the posterior over trajectories and
maps using a particle filter in which each sample represents a
complete robot trajectory, and a separate map is conditioned
on each such sample.
Exploiting the conditional dependencies inherent in the

single-robot SLAM problem (see Figure 1), we construct the
Rao-Blackwellized particle filter as follows. Let each particle
(i) be a tuple ⟨x(i)

t ,m
(i)
t , w

(i)
t ⟩ such that x

(i)
t is the robot

pose at time t, m
(i)
t is the map generated using observations

recorded up to and including time t, and w
(i)
t is the particle

weight. Given some action/observation pair (ut−1, zt), the
filter is updated using:

x
(i)
t = A(ut−1, x

(i)
t−1)

m
(i)
t = M(zt, x

(i)
t) + m

(i)
t−1

w
(i)
t = S(zt, x

(i)
t ,m

(i)
t−1)w

(i)
t−1 (2)

where A, S and M are the action, sensor and map models,
respectively. More specifically: A is an action model that
returns a random pose drawn from the distribution p(x(i)

t |

x1
0 x1

1 x1
2

u1
0 u1

1

z1
1 z1

2

m

x2
0 x2

1 x2
2

u2
0 u2

1

z2
1

z2
2

Fig. 2. Bayes net for multi-robot SLAM with known initial poses. The
trajectories of robots 1 and 2 are indicated by the sequences x1

0
, x1

1
, x1

2
, ...

and x2
0
, x2

1
, x2

2
, ..., respectively. We ignore the dependencies (dashed-lines)

between the observations z2 made by robot 2 and the pose x1 of robot 1
(and vice versa).

x
(i)
t−1, ut−1); S is the sensor model p(zt | x

(i)
t ,m

(i)
t−1); and

M is an incremental map generator that returns a partial
occupancy grid (expressed in log-likelihood form to allow for
linear superposition of grids). The basic intuition captured in
these equations is that particles with self-consistent maps will
be assigned larger weights than particles with inconsistent
maps, and that the latter will ultimately be removed by
resampling.
This approach has some valuable practical characteristics.

It is a bounded-time, bounded-storage algorithm, in which
processing effort and storage requirements scale linearly with
particle count, but are independent of the elapsed time t. It is
also very easy to implement: the sensor model S and action
model A are identical to those used in the standard Monte-
Carlo localization algorithm [8], and the map generator M is
a simple ray-tracing algorithm. The approach does have one
crucial limitation, however: the state space is extremely large
(with hundreds or thousands of dimensions), while the number
of particles is necessarily small (a few hundred to a few
thousand at most). Thus, the filter is a very sparse sampling of
the state space, and convergence is far from guaranteed; this
under-sampling typically manifests itself during loop closure,
when we may find that none of the particles generates a self-
consistent map. In order to make this approach mananageable,
one requires either very good action models [1] or very good
proposal distributions [7]. In this paper, we adopt the former
approach, combining odometry with laser data to produce
“stabilized” odometric pose estimates (see Section III-A).

B. Multi-robot SLAM with known initial poses

The single-robot SLAM formalism can readily be general-
ized to handle multiple robots, provided that the initial robot
poses are known. Consider a pair of robots, whose obser-

• Anderson et al. (SIAM Journal of Disc. Math. 2010)
• Calafiore et al. (TSMC 2012)
• Barooah and Hespanha (Control Systems Magazine 2007)
• Aragues et al. (System and Control Letters 2012)
• Thunberg et al. (CDC 2011)
• Tron and Vidal (CDC 2009)

Sensor Network Localization

25

• Leonard and Feder (JOE 2001)
• Leonard and Newman (IJCAI 2003)
• Bosse et al (IJRR 2004)
• Ni et al. (ICRA 2007)

Submapping
l1

l2

l3

l4

l5

l6

l7

l8

x0 x1 x2 x3

Fig. 4. The factor graph in Figure 2 is partitioned into the two submaps.
Each submap is indicated by a colored rectangle boundary.

Fig. 5. The block structure of the Jacobian in Figure 3 with rows ordered
according to the measurement types and the submap indices. From top to
bottom, the shaded areas represent Z1, Z2, and Z1,2.

vertical cut to our example problem to generate two submaps
M1 and M2.

We categorize measurements as either intra-measurements
Z

p

or inter-measurements Z
p,q

. Intra-measurements Z
p

are the set of measurements that involve only the
nodes in submap M

p

, and the inter-measurements are
the set Z

p,q

that have dependencies on both M
p

and
M

q

. In Figure 4, the inter-measurements are Z1,2 =
{u

x1,x2 , zx1,l5 , zx1,l6 , zx2,l3 , zx2,l4}, and all other measure-
ments make up the intra-measurements Z1 and Z2. The intra-
measurements are iteratively relinearized when aligning the
submaps locally. The linearization of the intra-measurements
is then fixed when optimizing the separator, and only the
inter-measurements are linearized during each iteration.

From a matrix point of view, the rows of the block-
structure A0 can be ordered in a way such that Z1 and Z2

(rows 1 to 14 in Figure 5) are placed above Z1,2 (rows 15 to
19). As we are going to optimize the submaps one by one, the
intra-measurements (rows 1 to 14) are internally ordered with
respect to their submap indices p, e.g., first Z1 (red-shaded
area) and then Z2 (blue-shaded area).

We also define boundary variables and non-boundary
variables with respect to the roles that variables play in the
measurements. Variables are boundary if they are involved in

Fig. 6. The subsystems in two submaps. Their columns Vp and Sp are
ordered by AMD and covered by red and blue shading.

at least one inter-measurement and non-boundary otherwise.
Thus, each submap M

p

is made up of two sets: a non-
boundary variable set V

p

and a boundary variable set S
p

,
such that

M
p

= V
p

[S
p

(6)

In Figure 4, we have V1 = {x0; l1; l2}, V2 = {x3; l7; l8},
S1 = {x1; l3; l4}, and S2 = {x2; l5; l6}.

B. Submap Optimization

Each submap M
p

can be optimized locally and indepen-
dently only using intra-measurements. The optimization of
every single submap is simply a small-scale

p
SAM problem

which can be written as

A
p

�M
p

= c
p

(7)

where A
p

and c
p

are corresponding parts of A and c in
Equation 5 and contain the columns only involved in Z

p

.
In order to allow re-use of the linearization point of the

intra-measurements, the columns of A
p

corresponding to the
boundary variables are ordered last, as follows:

⇥

A
Vp A

Sp

⇤

�V
p

�S
p

�

= c
p

(8)

As always, choosing a good column ordering is important, es-
pecially if the submaps contain many variables. As discussed
in Section II, we use AMD to obtain a good ordering of both
V

p

and S
p

. The block-structure of the re-ordered matrices A
p

in Equation 7 are shown in Figure 6.
Note that after computing the Hessian and its Cholesky

factorization, the system of equations being solved is

R
p

T
p

0 U
p

�

�V
p

�S
p

�

=

d
p

d
Up

�

where
�

d
p

; d
Up

is obtained by solving

R
p

T
p

0 U
p

�

T

d
p

d
Up

�

= c
p

Since the separating set variables correspond to the lower
right block of the Cholesky factor, the system of equations
involving only variables in the boundary variable set can be
extracted trivially for later use in the separator optimization:

U
p

�S
p

= d
Up

The state of art in robotics requires communication cost
quadratic in the number of communication links.

DDF-SAM: Fully distributed SLAM using constrained factor graphs
Cunningham et al. (IROS 2010)

Our Approach

Trajectory estimation as Pose Graph Optimization

26

Our Approach

Trajectory estimation as Pose Graph Optimization

27

Our Approach

Trajectory estimation as Pose Graph Optimization

28

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

1
x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

2

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

3

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

4

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

5
x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

6
x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

7

we represent a smooth trajectory using a finite set of 3D poses

xi = (Ri, ti) 2 SE (3)

�
R12, t12

�

�
R23, t23

�

�
R34, t34

�

�
R45, t45

�

�
R56, t56

�

�
R67, t67

�

�
R78, t78

�

zij =
�
Rij , tij

�

Rij = R

T
i Rj . noise

tij = R

T
i (tj � ti) + noise

1

c.f. Luca Carlone

Our Approach

Trajectory estimation as Pose Graph Optimization

29

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

1
x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

2

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

3

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

4

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

5
x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

6
x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

7

Edges in the graph correspond to relative pose measurements between pairs of poses

xi 2 S

E

(3)

�
R

12,
t12

�

1

x

i
2
S

E

(3
)

� R

12
,

t

12
�

� R

23
,

t

23
�

� R

34
,

t

34
�

� R

45
,

t

45
�

� R

56
,

t

56
�

� R

67
,

t

67
�

1

xi 2
S

E (3)

�
R12 ,

t12
�

�
R23 ,

t23
�

�
R34 ,

t34
�

�
R45 ,

t45
�

�
R56 ,

t56
�

�
R67 ,

t67
�

1

x

i 2
S

E

(3)
�
R

12
,

t12
��

R

23
,

t23
��

R

34
,

t34
��

R

45
,

t45
��

R

56
,

t56
��

R

67
,

t67
�

1

xi 2 S

E

(3)

�
R

12,
t12

�

�
R

23,
t23

�

�
R

34,
t34

�

�
R

45,
t45

�

�
R

56,
t56

�

�
R

67,
t67

�

1

xi 2
S

E (3)

�
R12 ,

t12
�

�
R23 ,

t23
�

�
R34 ,

t34
�

�
R45 ,

t45
�

�
R56 ,

t56
�

�
R67 ,

t67
�

1

x

i
2 S

E

(3
)

�
R

12
,

t

12

�

�
R

23
,

t

23

�

�
R

34
,

t

34

�

�
R

45
,

t

45

�

�
R

56
,

t

56

�

�
R

67
,

t

67

�

�
R

78
,

t

78

�

1

xi = (Ri, ti) 2 SE (3)

�
R12, t12

�

�
R23, t23

�

�
R34, t34

�

�
R45, t45

�

�
R56, t56

�

�
R67, t67

�

�
R78, t78

�

zij =
�
Rij , tij

�

Rij = R

T
i Rj . noise

tij = R

T
i (tj � ti) + noise

1

xi 2 SE (3)

�
R12, t12

�

�
R23, t23

�

�
R34, t34

�

�
R45, t45

�

�
R56, t56

�

�
R67, t67

�

�
R78, t78

�

zij =
�
Rij , tij

�

Rij = R

T
i Rj . noise

tij = R

T
i (tj � ti) + noise

1

xi 2 SE (3)

�
R12, t12

�

�
R23, t23

�

�
R34, t34

�

�
R45, t45

�

�
R56, t56

�

�
R67, t67

�

�
R78, t78

�

zij =
�
Rij , tij

�

Rij = R

T
i Rj . noise

tij = R

T
i (tj � ti) + noise

1

xi 2 SE (3)

�
R12, t12

�

�
R23, t23

�

�
R34, t34

�

�
R45, t45

�

�
R56, t56

�

�
R67, t67

�

�
R78, t78

�

zij =
�
Rij , tij

�

Rij = R

T
i Rj . noise

tij = R

T
i (tj � ti) + noise

1

{

c.f. Luca Carlone

Our Approach

Trajectory estimation as Pose Graph Optimization

30

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

1
x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

2

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

3

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

4

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

5
x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

6
x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

7

xi 2 S

E

(3)

�
R

12,
t12

�

1

x

i
2
S

E

(3
)

� R

12
,

t

12
�

� R

23
,

t

23
�

� R

34
,

t

34
�

� R

45
,

t

45
�

� R

56
,

t

56
�

� R

67
,

t

67
�

1

xi 2
S

E (3)

�
R12 ,

t12
�

�
R23 ,

t23
�

�
R34 ,

t34
�

�
R45 ,

t45
�

�
R56 ,

t56
�

�
R67 ,

t67
�

1

x

i 2
S

E

(3)
�
R

12
,

t12
��

R

23
,

t23
��

R

34
,

t34
��

R

45
,

t45
��

R

56
,

t56
��

R

67
,

t67
�

1

xi 2 S

E

(3)

�
R

12,
t12

�

�
R

23,
t23

�

�
R

34,
t34

�

�
R

45,
t45

�

�
R

56,
t56

�

�
R

67,
t67

�

1

xi 2
S

E (3)

�
R12 ,

t12
�

�
R23 ,

t23
�

�
R34 ,

t34
�

�
R45 ,

t45
�

�
R56 ,

t56
�

�
R67 ,

t67
�

1

x

i
2 S

E

(3
)

�
R

12
,

t

12

�

�
R

23
,

t

23

�

�
R

34
,

t

34

�

�
R

45
,

t

45

�

�
R

56
,

t

56

�

�
R

67
,

t

67

�

�
R

78
,

t

78

�

1

xi = (Ri, ti) 2 SE (3)

�
R12, t12

�

�
R23, t23

�

�
R34, t34

�

�
R45, t45

�

�
R56, t56

�

�
R67, t67

�

�
R78, t78

�

zij =
�
Rij , tij

�

Rij = R

T
i Rj . noise

tij = R

T
i (tj � ti) + noise

1

xi = (Ri, ti) 2 SE (3)

�
R12, t12

�

�
R23, t23

�

�
R34, t34

�

�
R45, t45

�

�
R56, t56

�

�
R67, t67

�

�
R78, t78

�

zij =
�
Rij , tij

�

Rij = R

T
i Rj . noise

tij = R

T
i (tj � ti) + noise

min
ti,Ri

X

(i,j)2E

!

2
t ktj � ti �Ritijk2 + !

2
RkRj �RiR

i
jk2F

1

c.f. Luca Carlone

pose graph optimization problem

xi 2 SE (3)

�
R12, t12

�

�
R23, t23

�

�
R34, t34

�

�
R45, t45

�

�
R56, t56

�

�
R67, t67

�

�
R78, t78

�

zij =
�
Rij , tij

�

Rij = R

T
i Rj . noise

tij = R

T
i (tj � ti) + noise

1

xi 2 SE (3)

�
R12, t12

�

�
R23, t23

�

�
R34, t34

�

�
R45, t45

�

�
R56, t56

�

�
R67, t67

�

�
R78, t78

�

zij =
�
Rij , tij

�

Rij = R

T
i Rj . noise

tij = R

T
i (tj � ti) + noise

1

xi 2 SE (3)

�
R12, t12

�

�
R23, t23

�

�
R34, t34

�

�
R45, t45

�

�
R56, t56

�

�
R67, t67

�

�
R78, t78

�

zij =
�
Rij , tij

�

Rij = R

T
i Rj . noise

tij = R

T
i (tj � ti) + noise

1

{

Our Approach

Trajectory estimation as Pose Graph Optimization:

Related work: iterative optimization

SLAM - TORO - Sphere Optimization
courtesy: Cyril Stachniss

31

Our Approach

Trajectory estimation as Pose Graph Optimization:

Related work: iterative optimization

SLAM - TORO - Sphere Optimization
courtesy: Cyril Stachniss

31

• Each phase requires solving a linear system
• shown to have near optimum results
• robust to bad initialization

Our Approach

Trajectory estimation as Pose Graph Optimization:

Related work: iterative optimization

Our approach: Two stage [Carlone et al. (ICRA 2015)]

Estimate Optimum

SLAM - TORO - Sphere Optimization
courtesy: Cyril Stachniss

32

Initialization Techniques for 3D SLAM: a Survey on Rotation Estimation and its Use in Pose Graph Optimization
Carlone et al. (ICRA 2015)

solve rotation solve poses

sphere

Fig. 1. odometry
Fig. 2. optimum

Fig. 3. gtsam: Gauss Newton from odometry Fig. 4. g2o: Gauss Newton from odometry
Fig. 5. g2oST: Gauss Newton
from spanning tree initialization

Fig. 6. chord+gtsam: Gauss Newton (1 iter.)
from initialization (Martinec and Pajdla [1])

Fig. 7. chord+gtsam: Gauss Newton (multiple iter.)
from initialization (Martinec and Pajdla [1])

Fig. 8. grad+gtsam: Gauss Newton (1 iter.) from
initialization (Tron and Vidal [2])

Fig. 9. grad+gtsam: Gauss Newton (multiple
iter.) from initialization (Tron and Vidal [2])

sphere

Fig. 1. odometry
Fig. 2. optimum

Fig. 3. gtsam: Gauss Newton from odometry Fig. 4. g2o: Gauss Newton from odometry
Fig. 5. g2oST: Gauss Newton
from spanning tree initialization

Fig. 6. chord+gtsam: Gauss Newton (1 iter.)
from initialization (Martinec and Pajdla [1])

Fig. 7. chord+gtsam: Gauss Newton (multiple iter.)
from initialization (Martinec and Pajdla [1])

Fig. 8. grad+gtsam: Gauss Newton (1 iter.) from
initialization (Tron and Vidal [2])

Fig. 9. grad+gtsam: Gauss Newton (multiple
iter.) from initialization (Tron and Vidal [2])

• Each phase requires solving a linear system
• shown to have near optimum results
• robust to bad initialization

Our Approach

Trajectory estimation as Pose Graph Optimization:

Related work: iterative optimization

Our approach: Two stage [Carlone et al. (ICRA 2015)]

Estimate Optimum

SLAM - TORO - Sphere Optimization
courtesy: Cyril Stachniss

32

Initialization Techniques for 3D SLAM: a Survey on Rotation Estimation and its Use in Pose Graph Optimization
Carlone et al. (ICRA 2015)

solve rotation solve poses

sphere

Fig. 1. odometry
Fig. 2. optimum

Fig. 3. gtsam: Gauss Newton from odometry Fig. 4. g2o: Gauss Newton from odometry
Fig. 5. g2oST: Gauss Newton
from spanning tree initialization

Fig. 6. chord+gtsam: Gauss Newton (1 iter.)
from initialization (Martinec and Pajdla [1])

Fig. 7. chord+gtsam: Gauss Newton (multiple iter.)
from initialization (Martinec and Pajdla [1])

Fig. 8. grad+gtsam: Gauss Newton (1 iter.) from
initialization (Tron and Vidal [2])

Fig. 9. grad+gtsam: Gauss Newton (multiple
iter.) from initialization (Tron and Vidal [2])

sphere

Fig. 1. odometry
Fig. 2. optimum

Fig. 3. gtsam: Gauss Newton from odometry Fig. 4. g2o: Gauss Newton from odometry
Fig. 5. g2oST: Gauss Newton
from spanning tree initialization

Fig. 6. chord+gtsam: Gauss Newton (1 iter.)
from initialization (Martinec and Pajdla [1])

Fig. 7. chord+gtsam: Gauss Newton (multiple iter.)
from initialization (Martinec and Pajdla [1])

Fig. 8. grad+gtsam: Gauss Newton (1 iter.) from
initialization (Tron and Vidal [2])

Fig. 9. grad+gtsam: Gauss Newton (multiple
iter.) from initialization (Tron and Vidal [2])

• Each phase requires solving a linear system
• We use the Gauss-Seidel algorithm as

distributed linear solver

Our Approach

Trajectory estimation as Pose Graph Optimization:

Related work: iterative optimization

Our approach: Two stage [Carlone et al. (ICRA 2015)] SLAM - TORO - Sphere Optimization
courtesy: Cyril Stachniss

33

Initialization Techniques for 3D SLAM: a Survey on Rotation Estimation and its Use in Pose Graph Optimization
Carlone et al. (ICRA 2015)

solve rotation solve poses

Estimate Optimum

sphere

Fig. 1. odometry
Fig. 2. optimum

Fig. 3. gtsam: Gauss Newton from odometry Fig. 4. g2o: Gauss Newton from odometry
Fig. 5. g2oST: Gauss Newton
from spanning tree initialization

Fig. 6. chord+gtsam: Gauss Newton (1 iter.)
from initialization (Martinec and Pajdla [1])

Fig. 7. chord+gtsam: Gauss Newton (multiple iter.)
from initialization (Martinec and Pajdla [1])

Fig. 8. grad+gtsam: Gauss Newton (1 iter.) from
initialization (Tron and Vidal [2])

Fig. 9. grad+gtsam: Gauss Newton (multiple
iter.) from initialization (Tron and Vidal [2])

sphere

Fig. 1. odometry
Fig. 2. optimum

Fig. 3. gtsam: Gauss Newton from odometry Fig. 4. g2o: Gauss Newton from odometry
Fig. 5. g2oST: Gauss Newton
from spanning tree initialization

Fig. 6. chord+gtsam: Gauss Newton (1 iter.)
from initialization (Martinec and Pajdla [1])

Fig. 7. chord+gtsam: Gauss Newton (multiple iter.)
from initialization (Martinec and Pajdla [1])

Fig. 8. grad+gtsam: Gauss Newton (1 iter.) from
initialization (Tron and Vidal [2])

Fig. 9. grad+gtsam: Gauss Newton (multiple
iter.) from initialization (Tron and Vidal [2])

• Each phase requires solving a linear system
• We use the Gauss-Seidel algorithm as

distributed linear solver

Our Approach

Trajectory estimation as Pose Graph Optimization:

Related work: iterative optimization

Our approach: Two stage [Carlone et al. (ICRA 2015)] SLAM - TORO - Sphere Optimization
courtesy: Cyril Stachniss

33

Initialization Techniques for 3D SLAM: a Survey on Rotation Estimation and its Use in Pose Graph Optimization
Carlone et al. (ICRA 2015)

solve rotation solve poses

Estimate Optimum

sphere

Fig. 1. odometry
Fig. 2. optimum

Fig. 3. gtsam: Gauss Newton from odometry Fig. 4. g2o: Gauss Newton from odometry
Fig. 5. g2oST: Gauss Newton
from spanning tree initialization

Fig. 6. chord+gtsam: Gauss Newton (1 iter.)
from initialization (Martinec and Pajdla [1])

Fig. 7. chord+gtsam: Gauss Newton (multiple iter.)
from initialization (Martinec and Pajdla [1])

Fig. 8. grad+gtsam: Gauss Newton (1 iter.) from
initialization (Tron and Vidal [2])

Fig. 9. grad+gtsam: Gauss Newton (multiple
iter.) from initialization (Tron and Vidal [2])

sphere

Fig. 1. odometry
Fig. 2. optimum

Fig. 3. gtsam: Gauss Newton from odometry Fig. 4. g2o: Gauss Newton from odometry
Fig. 5. g2oST: Gauss Newton
from spanning tree initialization

Fig. 6. chord+gtsam: Gauss Newton (1 iter.)
from initialization (Martinec and Pajdla [1])

Fig. 7. chord+gtsam: Gauss Newton (multiple iter.)
from initialization (Martinec and Pajdla [1])

Fig. 8. grad+gtsam: Gauss Newton (1 iter.) from
initialization (Tron and Vidal [2])

Fig. 9. grad+gtsam: Gauss Newton (multiple
iter.) from initialization (Tron and Vidal [2])

Centralized Two-Stage Approach

34

1. Solve for rotations first.

2. Given the rotations, recover full poses via a single Gauss-Newton iteration

Initialization Techniques for 3D SLAM: a Survey on Rotation Estimation and its Use in Pose Graph Optimization
Carlone et al. (ICRA 2015)

Centralized Two-Stage Approach

35

xi = (Ri, ti) 2 SE (3)

�
R12, t12

�

�
R23, t23

�

�
R34, t34

�

�
R45, t45

�

�
R56, t56

�

�
R67, t67

�

�
R78, t78

�

zij =
�
Rij , tij

�

Rij = R

T
i Rj . noise

tij = R

T
i (tj � ti) + noise

min
ti,Ri

X

(i,j)2E

!

2
t ktj � ti �Ritijk2 + !

2
RkRj �RiR

i
jk2F

1

Centralized Two-Stage Approach

36

rotation subproblemtranslation subproblem

xi = (Ri, ti) 2 SE (3)

�
R12, t12

�

�
R23, t23

�

�
R34, t34

�

�
R45, t45

�

�
R56, t56

�

�
R67, t67

�

�
R78, t78

�

zij =
�
Rij , tij

�

Rij = R

T
i Rj . noise

tij = R

T
i (tj � ti) + noise

min
ti,Ri

X

(i,j)2E

!

2
t ktj � ti �Ritijk2 + !

2
RkRj �RiR

i
jk2F

1

Centralized Two-Stage Approach

37

rotation subproblemtranslation subproblem

xi = (Ri, ti) 2 SE (3)

�
R12, t12

�

�
R23, t23

�

�
R34, t34

�

�
R45, t45

�

�
R56, t56

�

�
R67, t67

�

�
R78, t78

�

zij =
�
Rij , tij

�

Rij = R

T
i Rj . noise

tij = R

T
i (tj � ti) + noise

min
ti,Ri

X

(i,j)2E

!

2
t ktj � ti �Ritijk2 + !

2
RkRj �RiR

i
jk2F

1

Centralized Two-Stage Approach
min

Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

1

38

Centralized Two-Stage Approach
min

Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

1

min
Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

1

quadratic relaxation

min
Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

1

normal equation

Hessian (H)

} }

g

min
Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

Hy = g

1

38

Centralized Two-Stage Approach
min

Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

1

min
Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

1

quadratic relaxation

min
Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

1

normal equation

Hessian (H)

} }

g

min
Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

Hy = g

1

39

First stage

Centralized Two-Stage Approach
min

Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

1

min
Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

1

quadratic relaxation

min
Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

1

normal equation

Hessian (H)

} }

g

min
Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

Hy = g

1

40

First stage

use the rotation
estimates from the first
stage as initialization

Centralized Two-Stage Approach
min

Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

1

min
Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

1

quadratic relaxation

min
Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

1

normal equation

Hessian (H)

} }

g

min
Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

Hy = g

1

40

First stage

xi = (Ri, ti) 2 SE (3)

�
R12, t12

�

�
R23, t23

�

�
R34, t34

�

�
R45, t45

�

�
R56, t56

�

�
R67, t67

�

�
R78, t78

�

zij =
�
Rij , tij

�

Rij = R

T
i Rj . noise

tij = R

T
i (tj � ti) + noise

min
ti,Ri

X

(i,j)2E

!

2
t ktj � ti �Ritijk2 + !

2
RkRj �RiR

i
jk2F

1

use the rotation
estimates from the first
stage as initialization

Centralized Two-Stage Approach
min

Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

1

min
Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

1

quadratic relaxation

min
Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

1

normal equation

Hessian (H)

} }

g

min
Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

Hy = g

1

40

First stage

xi = (Ri, ti) 2 SE (3)

�
R12, t12

�

�
R23, t23

�

�
R34, t34

�

�
R45, t45

�

�
R56, t56

�

�
R67, t67

�

�
R78, t78

�

zij =
�
Rij , tij

�

Rij = R

T
i Rj . noise

tij = R

T
i (tj � ti) + noise

min
ti,Ri

X

(i,j)2E

!

2
t ktj � ti �Ritijk2 + !

2
RkRj �RiR

i
jk2F

1

min
Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

1

linearize

min
Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

1

solve

Hessian (H)

} }

g

min
Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

Hy = g

1

use the rotation
estimates from the first
stage as initialization

Centralized Two-Stage Approach
min

Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

1

min
Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

1

quadratic relaxation

min
Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

1

normal equation

Hessian (H)

} }

g

min
Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

Hy = g

1

41

First stage

xi = (Ri, ti) 2 SE (3)

�
R12, t12

�

�
R23, t23

�

�
R34, t34

�

�
R45, t45

�

�
R56, t56

�

�
R67, t67

�

�
R78, t78

�

zij =
�
Rij , tij

�

Rij = R

T
i Rj . noise

tij = R

T
i (tj � ti) + noise

min
ti,Ri

X

(i,j)2E

!

2
t ktj � ti �Ritijk2 + !

2
RkRj �RiR

i
jk2F

1

use the rotation
estimates from the first
stage as initialization

min
Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

1

linearize

min
Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

1

solve

Hessian (H)

} }

g

min
Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

Hy = g

1

Second stage

Centralized Two-Stage Approach
min

Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

1

min
Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

1

quadratic relaxation

min
Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

1

normal equation

Hessian (H)

} }

g

min
Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

Hy = g

1

42

First stage

xi = (Ri, ti) 2 SE (3)

�
R12, t12

�

�
R23, t23

�

�
R34, t34

�

�
R45, t45

�

�
R56, t56

�

�
R67, t67

�

�
R78, t78

�

zij =
�
Rij , tij

�

Rij = R

T
i Rj . noise

tij = R

T
i (tj � ti) + noise

min
ti,Ri

X

(i,j)2E

!

2
t ktj � ti �Ritijk2 + !

2
RkRj �RiR

i
jk2F

1

min
Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

1

linearize

min
Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

1

solve

Hessian (H)

} }

g

min
Ri2SO(3)

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
Ri

X

(i,j)2E

!2
RkRj �RiR̄

j
ik

2
F

min
y

kAy � bk2

�
ATA

�
y = AT b

Hy = g

1

Second stage

solve in a distributed manner
solve in a

distributed
manner

use the rotation
estimates from the first
stage as initialization

Distributed Gauss-Seidel Approach

43

robot �

robot ↵

↵1

↵2

↵3

↵4

�1

�2

�3

↵1 ↵2 ↵3 ↵4 �1 �2 �3

H↵↵ H↵�

H��H�↵
y�1 y�2

y�3

y↵1

y↵2

y↵3

y↵4

Trajectory Estimation Problem Hessian Matrix

↵1

↵2

↵3

↵4

�1

�2

�3

↵1 ↵2 ↵3 ↵4 �1 �2 �3

H↵↵ H↵�

H��H�↵

Hessian Matrix

Distributed Gauss-Seidel Approach

H
o

: µ = 1.0

H1 : µ > 1.0

yk+1
↵

= H�1
↵↵

�
�H

↵�

yk

�

+ g
↵

�

yk+1
�

= H�1
��

�
�H

�↵

yk

↵

+ g
�

�

1

44

robot �

robot ↵

y�1 y�2

y�3

y↵1

y↵2

y↵3

y↵4

Trajectory Estimation Problem

↵1

↵2

↵3

↵4

�1

�2

�3

↵1 ↵2 ↵3 ↵4 �1 �2 �3

H↵↵ H↵�

H��H�↵

Hessian Matrix

Distributed Gauss-Seidel Approach

H
o

: µ = 1.0

H1 : µ > 1.0

yk+1
↵

= H�1
↵↵

�
�H

↵�

yk

�

+ g
↵

�

yk+1
�

= H�1
��

�
�H

�↵

yk

↵

+ g
�

�

1

45

H
o

: µ = 1.0

H1 : µ > 1.0

yk+1
↵

= H�1
↵↵

�
�H

↵�

yk

�

+ g
↵

�

yk+1
�

= H�1
��

�
�H

�↵

yk

↵

+ g
�

�

1

robot �

robot ↵

y�1 y�2

y�3

y↵1

y↵2

y↵3

y↵4

Trajectory Estimation Problem

↵1

↵2

↵3

↵4

�1

�2

�3

↵1 ↵2 ↵3 ↵4 �1 �2 �3

H↵↵ H↵�

H��H�↵

Hessian Matrix

Distributed Gauss-Seidel Approach

H
o

: µ = 1.0

H1 : µ > 1.0

yk+1
↵

= H�1
↵↵

�
�H

↵�

yk

�

+ g
↵

�

yk+1
�

= H�1
��

�
�H

�↵

yk

↵

+ g
�

�

1

46

H
o

: µ = 1.0

H1 : µ > 1.0

yk+1
↵

= H�1
↵↵

�
�H

↵�

yk

�

+ g
↵

�

yk+1
�

= H�1
��

�
�H

�↵

yk

↵

+ g
�

�

1

Iterate

robot �

robot ↵

y�1 y�2

y�3

y↵1

y↵2

y↵3

y↵4

Trajectory Estimation Problem

↵1

↵2

↵3

↵4

�1

�2

�3

↵1 ↵2 ↵3 ↵4 �1 �2 �3

H↵↵ H↵�

H��H�↵

Hessian Matrix

H
o

: µ = 1.0

H1 : µ > 1.0

yk+1
↵

= H�1
↵↵

�
�H

↵�

yk

�

+ g
↵

�

yk+1
�

= H�1
��

�
�H

�↵

yk

↵

+ g
�

�

1

distributed
 Jacobi

error

iteration

centralized
yk+1
�

= H�1
��

�
�H

�↵

yk

↵

+ g
�

�

Distributed Gauss-Seidel Approach

47

robot �

robot ↵

y�1 y�2

y�3

y↵1

y↵2

y↵3

y↵4

Trajectory Estimation Problem

↵1

↵2

↵3

↵4

�1

�2

�3

↵1 ↵2 ↵3 ↵4 �1 �2 �3

H↵↵ H↵�

H��H�↵

Hessian Matrix

yk+1
↵

= H�1
↵↵

�
�H

↵�

yk

�

+ g
↵

�

H
o

: µ = 1.0

H1 : µ > 1.0

yk+1
↵

= H�1
↵↵

�
�H

↵�

yk

�

+ g
↵

�

yk+1
�

= H�1
��

�
�H

�↵

yk

↵

+ g
�

�

1

 distributed
Gauss-Seidel

error

iteration

centralized

Distributed Gauss-Seidel Approach

48

robot �

robot ↵

y�1 y�2

y�3

y↵1

y↵2

y↵3

y↵4

Trajectory Estimation Problem

↵1

↵2

↵3

↵4

�1

�2

�3

↵1 ↵2 ↵3 ↵4 �1 �2 �3

H↵↵ H↵�

H��H�↵

Hessian Matrix

H
o

: µ = 1.0

H1 : µ > 1.0

yk+1
↵

= H�1
↵↵

�
�H

↵�

yk

�

+ g
↵

�

yk+1
�

= H�1
��

�
�H

�↵

yk

↵

+ g
�

�

1

 distributed
Gauss-Seidel

error

iteration

centralized
yk+1
�

= H�1
��

�
�H

�↵

yk

↵

+ g
�

�

Distributed Gauss-Seidel Approach

49

Trajectory Estimation Problem

robot �

robot ↵

y�1 y�2

y�3

y↵1

y↵2

y↵3

y↵4

↵1

↵2

↵3

↵4

�1

�2

�3

↵1 ↵2 ↵3 ↵4 �1 �2 �3

H↵↵ H↵�

H��H�↵

Hessian Matrix

yk+1
↵

= H�1
↵↵

�
�H

↵�

yk

�

+ g
↵

�

H
o

: µ = 1.0

H1 : µ > 1.0

yk+1
↵

= H�1
↵↵

�
�H

↵�

yk

�

+ g
↵

�

yk+1
�

= H�1
��

�
�H

�↵

yk

↵

+ g
�

�

1

 distributed
Gauss-Seidel

error

iteration

centralized

Distributed Gauss-Seidel Approach

50

Trajectory Estimation Problem

robot �

robot ↵

y�1 y�2

y�3

y↵1

y↵2

y↵3

y↵4

↵1

↵2

↵3

↵4

�1

�2

�3

↵1 ↵2 ↵3 ↵4 �1 �2 �3

H↵↵ H↵�

H��H�↵

Hessian Matrix

H
o

: µ = 1.0

H1 : µ > 1.0

yk+1
↵

= H�1
↵↵

�
�H

↵�

yk

�

+ g
↵

�

yk+1
�

= H�1
��

�
�H

�↵

yk

↵

+ g
�

�

1

 distributed
Gauss-Seidel

error

iteration

centralized
yk+1
�

= H�1
��

�
�H

�↵

yk

↵

+ g
�

�

Distributed Gauss-Seidel Approach

51

Trajectory Estimation Problem

robot �

robot ↵

y�1 y�2

y�3

y↵1

y↵2

y↵3

y↵4

↵1

↵2

↵3

↵4

�1

�2

�3

↵1 ↵2 ↵3 ↵4 �1 �2 �3

H↵↵ H↵�

H��H�↵

Hessian Matrix

yk+1
↵

= H�1
↵↵

�
�H

↵�

yk

�

+ g
↵

�

H
o

: µ = 1.0

H1 : µ > 1.0

yk+1
↵

= H�1
↵↵

�
�H

↵�

yk

�

+ g
↵

�

yk+1
�

= H�1
��

�
�H

�↵

yk

↵

+ g
�

�

1

 distributed
Gauss-Seidel

error

iteration

centralized

Distributed Gauss-Seidel Approach

52

Trajectory Estimation Problem

robot �

robot ↵

y�1 y�2

y�3

y↵1

y↵2

y↵3

y↵4

↵1

↵2

↵3

↵4

�1

�2

�3

↵1 ↵2 ↵3 ↵4 �1 �2 �3

H↵↵ H↵�

H��H�↵

Hessian Matrix

H
o

: µ = 1.0

H1 : µ > 1.0

yk+1
↵

= H�1
↵↵

�
�H

↵�

yk

�

+ g
↵

�

yk+1
�

= H�1
��

�
�H

�↵

yk

↵

+ g
�

�

1

 distributed
Gauss-Seidel

error

iteration

centralized
yk+1
�

= H�1
��

�
�H

�↵

yk

↵

+ g
�

�

Distributed Gauss-Seidel Approach

53

Trajectory Estimation Problem

robot �

robot ↵

y�1 y�2

y�3

y↵1

y↵2

y↵3

y↵4

↵1

↵2

↵3

↵4

�1

�2

�3

↵1 ↵2 ↵3 ↵4 �1 �2 �3

H↵↵ H↵�

H��H�↵

Hessian Matrix

yk+1
↵

= H�1
↵↵

�
�H

↵�

yk

�

+ g
↵

�

H
o

: µ = 1.0

H1 : µ > 1.0

yk+1
↵

= H�1
↵↵

�
�H

↵�

yk

�

+ g
↵

�

yk+1
�

= H�1
��

�
�H

�↵

yk

↵

+ g
�

�

1

 distributed
Gauss-Seidel

error

iteration

centralized

Distributed Gauss-Seidel Approach

54

Trajectory Estimation Problem

robot �

robot ↵

y�1 y�2

y�3

y↵1

y↵2

y↵3

y↵4

↵1

↵2

↵3

↵4

�1

�2

�3

↵1 ↵2 ↵3 ↵4 �1 �2 �3

H↵↵ H↵�

H��H�↵

Hessian Matrix

H
o

: µ = 1.0

H1 : µ > 1.0

yk+1
↵

= H�1
↵↵

�
�H

↵�

yk

�

+ g
↵

�

yk+1
�

= H�1
��

�
�H

�↵

yk

↵

+ g
�

�

1

 distributed
Gauss-Seidel

error

iteration

centralized
yk+1
�

= H�1
��

�
�H

�↵

yk

↵

+ g
�

�

Distributed Gauss-Seidel Approach

55

Trajectory Estimation Problem

robot �

robot ↵

y�1 y�2

y�3

y↵1

y↵2

y↵3

y↵4

↵1

↵2

↵3

↵4

�1

�2

�3

↵1 ↵2 ↵3 ↵4 �1 �2 �3

H↵↵ H↵�

H��H�↵

Hessian Matrix

 distributed
Gauss-Seidel

error

iteration

centralized

Distributed Gauss-Seidel Approach

56

xi = (Ri, ti) 2 SE (3)

�
R12, t12

�

�
R23, t23

�

�
R34, t34

�

�
R45, t45

�

�
R56, t56

�

�
R67, t67

�

�
R78, t78

�

zij =
�
Rij , tij

�

Rij = R

T
i Rj . noise

tij = R

T
i (tj � ti) + noise

min
ti,Ri

X

(i,j)2E

!

2
t ktj � ti �Ritijk2 + !

2
RkRj �RiR

i
jk2F

kyk+1 � y

kk threshold

⇡

1

Stop the iterations if the change in
the estimate is sufficiently small

robot �

robot ↵

y�1 y�2

y�3

y↵1

y↵2

y↵3

y↵4

Trajectory Estimation Problem

 distributed
Gauss-Seidel

error

iteration

centralized

Distributed Gauss-Seidel Approach

57

The Gauss-Seidel iterations converge to the centralized solution
starting from any initial estimate

Guaranteed Convergence:

We simulate different problems with robots moving along a 3D grid

Simulation Experiments

10

(a) Rotation Noise (b) Translation Noise
Fig. 15. Convergence for increasing levels of noise (scenario with 49
Robots). (a) Average rotation estimation error for �R = {1, 5, 10, 15, 20}�.
(b) Average pose estimation error for �t = {0.1, 0.3, 0.5, 0.8, 1.0}m.

(a) Exploration steps (b) Monte Carlo Runs
Fig. 16. (a) Number of exploration steps required to explore a fixed sized
grid with the increasing number of robots. (b) Shows the monte-carlo run
trajectories for Gazebo scenario.

(a) Initial (b) 10 iterations (c) 1000 iterations
Fig. 17. Trajectory estimates for the scenario with 49 robots. (a) Odometric
estimate (not used in our approach and only given for visualization purposes),
(b)-(c) DJ estimate after given number of iterations.

• (a) estimation error (wrt centralized) averaged over 100
Monte Carlo runs, for increasing noise level, for team of
2 robots

• (b) estimation error (wrt centralized) averaged over 100
Monte Carlo runs, for increasing noise level, for team of
4 robots

• 2 point clouds, one for indoor scenario, the other for
outdoor scenario

• amount of exchanged bytes for (a) and (b), compared
with DDF-SAM (other the comparison should be in the
real tests)

• BONUS: exploration time over 100 monte carlo runs for
increasing number of robots

Gazebo Simulations (Object based). we characterize the
performance of the proposed approach in terms of scalability
in the number of robots and sensitivity to noise. We test the
approach in two scenarios (a) 25 Chairs and (b) House,
which we simulated in Gazebo. In the 25 Chairs scenario,
we placed 25 chairs as objects on a grid, with each chair
placed at a random angle. In the House scenario, we placed
furniture as objects in order to simulate an indoor living room
environment. Fig. 22 shows the two scenarios. Unless specified
otherwise, we generate measurement noise from a zero-mean
Gaussian distribution with standard deviation �

R

= 5� for the

(a) (b)
Fig. 18. (a) Average number of iterations versus number of separators for the
DJ algorithm. (b) Communication burden (bytes of exchanged information)
for the DJ and DDF-SAM algorithms, for increasing number of separators.

(a) Rotation Noise (b) Translation Noise
Fig. 20. Convergence for increasing levels of noise (scenario with 2 Robots in
Gazebo). (a) Average rotation estimation error for �R = {1, 5, 10, 15, 20}�.
(b) Average pose estimation error for �t = {0.1, 0.3, 0.5, 0.8, 1.0}m.

rotations and �
t

= 0.2m for the translations. Six robots are
used by default. Results are averaged over 10 Monte Carlo
runs.

Figs. 23 show the comparison between the object locations
and trajectories estimated using multi-robot mapping and
centralized mapping for two scenarios. Videos showing the
map building for the two scenarios are available at: https://
youtu.be/nXJamypPvVY and https://youtu.be/nYm2sSHuGjo.

1) Accuracy in the Number of Robots: Table III reports the
number of iterations and our accuracy metrics (cost, ATE*,
ARE*) for increasing number of robots. The table confirms
that the distributed approach is nearly as accurate as the
centralized Gauss-Newton method and the number of iterations
does not increase with increasing number of robots, making
our approach scalable to large teams. Usually, few tens of
iterations suffice to reach an accurate estimate.

2) Sensitivity to Measurement Noise: We further test the
accuracy of our approach by evaluating the number of itera-
tions, the cost, the ATE* and the ARE* for increasing levels of
noise. Table IV shows that our approach is able to replicate the
accuracy of the centralized Gauss-Newton method, regardless
of the noise level.

B. Field Experiments
We tested the DJ approach on field data collected by

two Jackal robots (Fig. 24), moving in a MOUT (Military
Operations in Urban Terrain) test facility. Each robot collects
3D scans using an Hokuyo 30LS-EW with a custom tilt
mechanism, and uses IMU and wheel odometry to measure
its ego-motion. 3D scans are used to compute inter-robot
measurements (via ICP) during rendezvous. We evaluated our
approach in three different floors of a building in the facility.

4 robots 9 robots 16 robots 49 robots

58

We simulate different problems with robots moving along a 3D grid

Simulation Experiments

10

(a) Rotation Noise (b) Translation Noise
Fig. 15. Convergence for increasing levels of noise (scenario with 49
Robots). (a) Average rotation estimation error for �R = {1, 5, 10, 15, 20}�.
(b) Average pose estimation error for �t = {0.1, 0.3, 0.5, 0.8, 1.0}m.

(a) Exploration steps (b) Monte Carlo Runs
Fig. 16. (a) Number of exploration steps required to explore a fixed sized
grid with the increasing number of robots. (b) Shows the monte-carlo run
trajectories for Gazebo scenario.

(a) Initial (b) 10 iterations (c) 1000 iterations
Fig. 17. Trajectory estimates for the scenario with 49 robots. (a) Odometric
estimate (not used in our approach and only given for visualization purposes),
(b)-(c) DJ estimate after given number of iterations.

• (a) estimation error (wrt centralized) averaged over 100
Monte Carlo runs, for increasing noise level, for team of
2 robots

• (b) estimation error (wrt centralized) averaged over 100
Monte Carlo runs, for increasing noise level, for team of
4 robots

• 2 point clouds, one for indoor scenario, the other for
outdoor scenario

• amount of exchanged bytes for (a) and (b), compared
with DDF-SAM (other the comparison should be in the
real tests)

• BONUS: exploration time over 100 monte carlo runs for
increasing number of robots

Gazebo Simulations (Object based). we characterize the
performance of the proposed approach in terms of scalability
in the number of robots and sensitivity to noise. We test the
approach in two scenarios (a) 25 Chairs and (b) House,
which we simulated in Gazebo. In the 25 Chairs scenario,
we placed 25 chairs as objects on a grid, with each chair
placed at a random angle. In the House scenario, we placed
furniture as objects in order to simulate an indoor living room
environment. Fig. 22 shows the two scenarios. Unless specified
otherwise, we generate measurement noise from a zero-mean
Gaussian distribution with standard deviation �

R

= 5� for the

(a) (b)
Fig. 18. (a) Average number of iterations versus number of separators for the
DJ algorithm. (b) Communication burden (bytes of exchanged information)
for the DJ and DDF-SAM algorithms, for increasing number of separators.

(a) Rotation Noise (b) Translation Noise
Fig. 20. Convergence for increasing levels of noise (scenario with 2 Robots in
Gazebo). (a) Average rotation estimation error for �R = {1, 5, 10, 15, 20}�.
(b) Average pose estimation error for �t = {0.1, 0.3, 0.5, 0.8, 1.0}m.

rotations and �
t

= 0.2m for the translations. Six robots are
used by default. Results are averaged over 10 Monte Carlo
runs.

Figs. 23 show the comparison between the object locations
and trajectories estimated using multi-robot mapping and
centralized mapping for two scenarios. Videos showing the
map building for the two scenarios are available at: https://
youtu.be/nXJamypPvVY and https://youtu.be/nYm2sSHuGjo.

1) Accuracy in the Number of Robots: Table III reports the
number of iterations and our accuracy metrics (cost, ATE*,
ARE*) for increasing number of robots. The table confirms
that the distributed approach is nearly as accurate as the
centralized Gauss-Newton method and the number of iterations
does not increase with increasing number of robots, making
our approach scalable to large teams. Usually, few tens of
iterations suffice to reach an accurate estimate.

2) Sensitivity to Measurement Noise: We further test the
accuracy of our approach by evaluating the number of itera-
tions, the cost, the ATE* and the ARE* for increasing levels of
noise. Table IV shows that our approach is able to replicate the
accuracy of the centralized Gauss-Newton method, regardless
of the noise level.

B. Field Experiments
We tested the DJ approach on field data collected by

two Jackal robots (Fig. 24), moving in a MOUT (Military
Operations in Urban Terrain) test facility. Each robot collects
3D scans using an Hokuyo 30LS-EW with a custom tilt
mechanism, and uses IMU and wheel odometry to measure
its ego-motion. 3D scans are used to compute inter-robot
measurements (via ICP) during rendezvous. We evaluated our
approach in three different floors of a building in the facility.

4 robots 9 robots 16 robots 49 robots

58

each robot’s trajectory is shown in different color

We simulate different problems with robots moving along a 3D grid

Simulation Experiments

10

(a) Rotation Noise (b) Translation Noise
Fig. 15. Convergence for increasing levels of noise (scenario with 49
Robots). (a) Average rotation estimation error for �R = {1, 5, 10, 15, 20}�.
(b) Average pose estimation error for �t = {0.1, 0.3, 0.5, 0.8, 1.0}m.

(a) Exploration steps (b) Monte Carlo Runs
Fig. 16. (a) Number of exploration steps required to explore a fixed sized
grid with the increasing number of robots. (b) Shows the monte-carlo run
trajectories for Gazebo scenario.

(a) Initial (b) 10 iterations (c) 1000 iterations
Fig. 17. Trajectory estimates for the scenario with 49 robots. (a) Odometric
estimate (not used in our approach and only given for visualization purposes),
(b)-(c) DJ estimate after given number of iterations.

• (a) estimation error (wrt centralized) averaged over 100
Monte Carlo runs, for increasing noise level, for team of
2 robots

• (b) estimation error (wrt centralized) averaged over 100
Monte Carlo runs, for increasing noise level, for team of
4 robots

• 2 point clouds, one for indoor scenario, the other for
outdoor scenario

• amount of exchanged bytes for (a) and (b), compared
with DDF-SAM (other the comparison should be in the
real tests)

• BONUS: exploration time over 100 monte carlo runs for
increasing number of robots

Gazebo Simulations (Object based). we characterize the
performance of the proposed approach in terms of scalability
in the number of robots and sensitivity to noise. We test the
approach in two scenarios (a) 25 Chairs and (b) House,
which we simulated in Gazebo. In the 25 Chairs scenario,
we placed 25 chairs as objects on a grid, with each chair
placed at a random angle. In the House scenario, we placed
furniture as objects in order to simulate an indoor living room
environment. Fig. 22 shows the two scenarios. Unless specified
otherwise, we generate measurement noise from a zero-mean
Gaussian distribution with standard deviation �

R

= 5� for the

(a) (b)
Fig. 18. (a) Average number of iterations versus number of separators for the
DJ algorithm. (b) Communication burden (bytes of exchanged information)
for the DJ and DDF-SAM algorithms, for increasing number of separators.

(a) Rotation Noise (b) Translation Noise
Fig. 20. Convergence for increasing levels of noise (scenario with 2 Robots in
Gazebo). (a) Average rotation estimation error for �R = {1, 5, 10, 15, 20}�.
(b) Average pose estimation error for �t = {0.1, 0.3, 0.5, 0.8, 1.0}m.

rotations and �
t

= 0.2m for the translations. Six robots are
used by default. Results are averaged over 10 Monte Carlo
runs.

Figs. 23 show the comparison between the object locations
and trajectories estimated using multi-robot mapping and
centralized mapping for two scenarios. Videos showing the
map building for the two scenarios are available at: https://
youtu.be/nXJamypPvVY and https://youtu.be/nYm2sSHuGjo.

1) Accuracy in the Number of Robots: Table III reports the
number of iterations and our accuracy metrics (cost, ATE*,
ARE*) for increasing number of robots. The table confirms
that the distributed approach is nearly as accurate as the
centralized Gauss-Newton method and the number of iterations
does not increase with increasing number of robots, making
our approach scalable to large teams. Usually, few tens of
iterations suffice to reach an accurate estimate.

2) Sensitivity to Measurement Noise: We further test the
accuracy of our approach by evaluating the number of itera-
tions, the cost, the ATE* and the ARE* for increasing levels of
noise. Table IV shows that our approach is able to replicate the
accuracy of the centralized Gauss-Newton method, regardless
of the noise level.

B. Field Experiments
We tested the DJ approach on field data collected by

two Jackal robots (Fig. 24), moving in a MOUT (Military
Operations in Urban Terrain) test facility. Each robot collects
3D scans using an Hokuyo 30LS-EW with a custom tilt
mechanism, and uses IMU and wheel odometry to measure
its ego-motion. 3D scans are used to compute inter-robot
measurements (via ICP) during rendezvous. We evaluated our
approach in three different floors of a building in the facility.

4 robots 9 robots 16 robots 49 robots

58

each robot’s trajectory is shown in different color

communication link is shown in gray color

59

Distributed Gauss-Seidel DDF-SAM

DDF-SAM: Fully distributed SLAM using constrained factor graphs
Cunningham et al. (IROS 2010)

(state of art)(our algorithm)

Robust to bad Initialization

59

Distributed Gauss-Seidel DDF-SAM

DDF-SAM: Fully distributed SLAM using constrained factor graphs
Cunningham et al. (IROS 2010)

(state of art)(our algorithm)

Robust to bad Initialization

Fast Convergence with Flagged Initialization

Without
Flagged Initialization

With
Flagged Initialization

60

Fast Convergence with Flagged Initialization

Without
Flagged Initialization

With
Flagged Initialization

60

Anytime Flavor

10

(a) Rotation Noise (b) Translation Noise
Fig. 15. Convergence for increasing levels of noise (scenario with 49
Robots). (a) Average rotation estimation error for �R = {1, 5, 10, 15, 20}�.
(b) Average pose estimation error for �t = {0.1, 0.3, 0.5, 0.8, 1.0}m.

(a) Exploration steps (b) Monte Carlo Runs
Fig. 16. (a) Number of exploration steps required to explore a fixed sized
grid with the increasing number of robots. (b) Shows the monte-carlo run
trajectories for Gazebo scenario.

(a) Initial (b) 10 iterations (c) 1000 iterations
Fig. 17. Trajectory estimates for the scenario with 49 robots. (a) Odometric
estimate (not used in our approach and only given for visualization purposes),
(b)-(c) DJ estimate after given number of iterations.

• (a) estimation error (wrt centralized) averaged over 100
Monte Carlo runs, for increasing noise level, for team of
2 robots

• (b) estimation error (wrt centralized) averaged over 100
Monte Carlo runs, for increasing noise level, for team of
4 robots

• 2 point clouds, one for indoor scenario, the other for
outdoor scenario

• amount of exchanged bytes for (a) and (b), compared
with DDF-SAM (other the comparison should be in the
real tests)

• BONUS: exploration time over 100 monte carlo runs for
increasing number of robots

Gazebo Simulations (Object based). we characterize the
performance of the proposed approach in terms of scalability
in the number of robots and sensitivity to noise. We test the
approach in two scenarios (a) 25 Chairs and (b) House,
which we simulated in Gazebo. In the 25 Chairs scenario,
we placed 25 chairs as objects on a grid, with each chair
placed at a random angle. In the House scenario, we placed
furniture as objects in order to simulate an indoor living room
environment. Fig. 22 shows the two scenarios. Unless specified
otherwise, we generate measurement noise from a zero-mean
Gaussian distribution with standard deviation �

R

= 5� for the

(a) (b)
Fig. 18. (a) Average number of iterations versus number of separators for the
DJ algorithm. (b) Communication burden (bytes of exchanged information)
for the DJ and DDF-SAM algorithms, for increasing number of separators.

(a) Rotation Noise (b) Translation Noise
Fig. 20. Convergence for increasing levels of noise (scenario with 2 Robots in
Gazebo). (a) Average rotation estimation error for �R = {1, 5, 10, 15, 20}�.
(b) Average pose estimation error for �t = {0.1, 0.3, 0.5, 0.8, 1.0}m.

rotations and �
t

= 0.2m for the translations. Six robots are
used by default. Results are averaged over 10 Monte Carlo
runs.

Figs. 23 show the comparison between the object locations
and trajectories estimated using multi-robot mapping and
centralized mapping for two scenarios. Videos showing the
map building for the two scenarios are available at: https://
youtu.be/nXJamypPvVY and https://youtu.be/nYm2sSHuGjo.

1) Accuracy in the Number of Robots: Table III reports the
number of iterations and our accuracy metrics (cost, ATE*,
ARE*) for increasing number of robots. The table confirms
that the distributed approach is nearly as accurate as the
centralized Gauss-Newton method and the number of iterations
does not increase with increasing number of robots, making
our approach scalable to large teams. Usually, few tens of
iterations suffice to reach an accurate estimate.

2) Sensitivity to Measurement Noise: We further test the
accuracy of our approach by evaluating the number of itera-
tions, the cost, the ATE* and the ARE* for increasing levels of
noise. Table IV shows that our approach is able to replicate the
accuracy of the centralized Gauss-Newton method, regardless
of the noise level.

B. Field Experiments
We tested the DJ approach on field data collected by

two Jackal robots (Fig. 24), moving in a MOUT (Military
Operations in Urban Terrain) test facility. Each robot collects
3D scans using an Hokuyo 30LS-EW with a custom tilt
mechanism, and uses IMU and wheel odometry to measure
its ego-motion. 3D scans are used to compute inter-robot
measurements (via ICP) during rendezvous. We evaluated our
approach in three different floors of a building in the facility.

Initial 10 iterations 1000 iterations Centralized

Already accurate after few iterations.

61

Resilient to Measurement Noise

62

Cost:

a2

a3

b0

b1

b2

b3

c0

c1

c2

c3

d0

d1

d2

d3

kyk+1 � y

kk threshold

⇡

min
x

kAx� bk2

kAx(k) � bk2

MX

i=1

1

2
k h

i

(x)� z

i| {z }
prediction error

k2⌃i

2

Scalable in the number of robots

63

Communication Bandwidth
Requirements

64

Communication Bandwidth =

Amount of communication
required to perform distributed

optimization given the
communication link.

The amount of communication
required to establish that link.

+

Communication Bandwidth
Requirements

64

Communication Bandwidth =

Amount of communication
required to perform distributed

optimization given the
communication link.

The amount of communication
required to establish that link.

+

Distributed Gauss-Seidel

Communication Bandwidth
Requirements

64

Communication Bandwidth =

Amount of communication
required to perform distributed

optimization given the
communication link.

The amount of communication
required to establish that link.

+

Distributed Gauss-Seidel

Distributed Object-based SLAM

Communication is Linear

Increase in communication burden is linear with the increase in the
number of communication links

10

(a) Rotation Noise (b) Translation Noise
Fig. 15. Convergence for increasing levels of noise (scenario with 49
Robots). (a) Average rotation estimation error for �R = {1, 5, 10, 15, 20}�.
(b) Average pose estimation error for �t = {0.1, 0.3, 0.5, 0.8, 1.0}m.

(a) Exploration steps (b) Monte Carlo Runs
Fig. 16. (a) Number of exploration steps required to explore a fixed sized
grid with the increasing number of robots. (b) Shows the monte-carlo run
trajectories for Gazebo scenario.

(a) Initial (b) 10 iterations (c) 1000 iterations
Fig. 17. Trajectory estimates for the scenario with 49 robots. (a) Odometric
estimate (not used in our approach and only given for visualization purposes),
(b)-(c) DJ estimate after given number of iterations.

• (a) estimation error (wrt centralized) averaged over 100
Monte Carlo runs, for increasing noise level, for team of
2 robots

• (b) estimation error (wrt centralized) averaged over 100
Monte Carlo runs, for increasing noise level, for team of
4 robots

• 2 point clouds, one for indoor scenario, the other for
outdoor scenario

• amount of exchanged bytes for (a) and (b), compared
with DDF-SAM (other the comparison should be in the
real tests)

• BONUS: exploration time over 100 monte carlo runs for
increasing number of robots

Gazebo Simulations (Object based). we characterize the
performance of the proposed approach in terms of scalability
in the number of robots and sensitivity to noise. We test the
approach in two scenarios (a) 25 Chairs and (b) House,
which we simulated in Gazebo. In the 25 Chairs scenario,
we placed 25 chairs as objects on a grid, with each chair
placed at a random angle. In the House scenario, we placed
furniture as objects in order to simulate an indoor living room
environment. Fig. 22 shows the two scenarios. Unless specified
otherwise, we generate measurement noise from a zero-mean
Gaussian distribution with standard deviation �

R

= 5� for the

(a) (b)
Fig. 18. (a) Average number of iterations versus number of separators for the
DJ algorithm. (b) Communication burden (bytes of exchanged information)
for the DJ and DDF-SAM algorithms, for increasing number of separators.

(a) Rotation Noise (b) Translation Noise
Fig. 20. Convergence for increasing levels of noise (scenario with 2 Robots in
Gazebo). (a) Average rotation estimation error for �R = {1, 5, 10, 15, 20}�.
(b) Average pose estimation error for �t = {0.1, 0.3, 0.5, 0.8, 1.0}m.

rotations and �
t

= 0.2m for the translations. Six robots are
used by default. Results are averaged over 10 Monte Carlo
runs.

Figs. 23 show the comparison between the object locations
and trajectories estimated using multi-robot mapping and
centralized mapping for two scenarios. Videos showing the
map building for the two scenarios are available at: https://
youtu.be/nXJamypPvVY and https://youtu.be/nYm2sSHuGjo.

1) Accuracy in the Number of Robots: Table III reports the
number of iterations and our accuracy metrics (cost, ATE*,
ARE*) for increasing number of robots. The table confirms
that the distributed approach is nearly as accurate as the
centralized Gauss-Newton method and the number of iterations
does not increase with increasing number of robots, making
our approach scalable to large teams. Usually, few tens of
iterations suffice to reach an accurate estimate.

2) Sensitivity to Measurement Noise: We further test the
accuracy of our approach by evaluating the number of itera-
tions, the cost, the ATE* and the ARE* for increasing levels of
noise. Table IV shows that our approach is able to replicate the
accuracy of the centralized Gauss-Newton method, regardless
of the noise level.

B. Field Experiments
We tested the DJ approach on field data collected by

two Jackal robots (Fig. 24), moving in a MOUT (Military
Operations in Urban Terrain) test facility. Each robot collects
3D scans using an Hokuyo 30LS-EW with a custom tilt
mechanism, and uses IMU and wheel odometry to measure
its ego-motion. 3D scans are used to compute inter-robot
measurements (via ICP) during rendezvous. We evaluated our
approach in three different floors of a building in the facility.

#rendezvous

Co
m

m
un

ic
at

io
n

bu
rd

en
 (b

yt
es

)

65

DDF-SAM: Fully distributed SLAM using constrained factor graphs
Cunningham et al. (IROS 2010)

We tested the proposed approach on field
data collected by two to ten Jackal robots,
moving in different environments. We use
the estimated trajectories to reconstruct a

3D map of the facility

Field Experiments

66

Orbbec Astra
RGB-D sensor

Velodyne 32-E
Laser Scanner IMU

Wheel
Odometry

We tested the proposed approach on field
data collected by two to ten Jackal robots,
moving in different environments. We use
the estimated trajectories to reconstruct a

3D map of the facility

Field Experiments

66

Orbbec Astra
RGB-D sensor

Velodyne 32-E
Laser Scanner IMU

Wheel
Odometry

Field Experiments

67

RGBD Frame

Wheel Odometry

Orbbec Astra
RGB-D sensor

Velodyne 32-E
Laser Scanner IMU

Wheel
OdometryLaser Scan

IMU

Field Experiments

68

RGBD Frame

Wheel Odometry

Orbbec Astra
RGB-D sensor

Velodyne 32-E
Laser Scanner IMU

Wheel
Odometry

Laser Scan

IMU

IMU Corrected
Wheel Odometry

Laser Scan
Relative Pose

RGB-D Frame
Relative Pose

OmniMapper

ORB-SLAM2

Laser Scan GICP

OmniMapper: A multimodal mapping framework
Trevor et al. (ICRA 2014)

Ego-motion Estimation

Field Experiments

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

robot

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

robot

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

69

each robot estimates its own trajectory in the local coordinate frame

Robot Communication

Field Experiments

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

robot

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

robot

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

70

each robot communicates nearby keyframes and laser scans to the other robot

Robot Communication

Field Experiments

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

robot

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

robot

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

70

each robot communicates nearby keyframes and laser scans to the other robot

Robot Communication

Field Experiments

71

potential
keyframe
matches

Keyframes
xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

↵

1

Keyframes
xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

�

1

Vocabulary Tree +
TF-IDF Score

threshold

Robot Communication

Field Experiments

71

potential
keyframe
matches

Keyframes
xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

↵

1

Keyframes
xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

�

1

Vocabulary Tree +
TF-IDF Score

threshold

initial
transformation

3D-3D Sparse
Correspondences

+RANSAC

Robot Communication

Field Experiments

71

potential
keyframe
matches

Keyframes
xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

↵

1

Keyframes
xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

�

1

Vocabulary Tree +
TF-IDF Score

threshold

initial
transformation

3D-3D Sparse
Correspondences

+RANSAC
inter-robot

measurement
Laser Scan

GICP

Laser Scan
xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

↵

1

Laser Scan
xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

�

1

Robot Communication

Field Experiments

71
Assumption: Parameters are conservatively chosen to avoid false positive matches.

potential
keyframe
matches

Keyframes
xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

↵

1

Keyframes
xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

�

1

Vocabulary Tree +
TF-IDF Score

threshold

initial
transformation

3D-3D Sparse
Correspondences

+RANSAC
inter-robot

measurement
Laser Scan

GICP

Laser Scan
xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

↵

1

Laser Scan
xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

�

1

Robot Communication

Field Experiments

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

robot

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

robot

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

72

Inter-robot communication factor is added between matching frames

Robot Communication

Field Experiments

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

robot

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

robot

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

73

Factor graph optimized using Distributed Gauss-Seidel Algorithm

Robot Communication

Field Experiments (4 Robots)

74

Military Training Facility Size of the map: 17 m X 17 m
Average Number of Keyframes: 264

Average Distance travelled by each robot: 246.28 m

Field Experiments (4 Robots)

74

Military Training Facility Size of the map: 17 m X 17 m
Average Number of Keyframes: 264

Average Distance travelled by each robot: 246.28 m

Field Experiments (5 Robots)

75

Klaus Building (3rd Floor)
 Georgia Tech

Size of the map: 151 m X 118 m
Average Number of Poses: 6835

Average Distance travelled by each robot: 231.67 m

Field Experiments (5 Robots)

75

Klaus Building (3rd Floor)
 Georgia Tech

Size of the map: 151 m X 118 m
Average Number of Poses: 6835

Average Distance travelled by each robot: 231.67 m

Field Experiments (10 Robots)

76

Military Training Facility

Size of the map: 15.8 m X 11.8 m
Average Number of Poses: 4564

Average Distance travelled by each robot: 20.1 m

Field Experiments (10 Robots)

76

Military Training Facility

Size of the map: 15.8 m X 11.8 m
Average Number of Poses: 4564

Average Distance travelled by each robot: 20.1 m

Field Experiments (11 Robots)

77

IRIM Lab
Georgia Tech

Size of the map: 55 m X 61 m
Average Number of Poses: 3995

Average Distance travelled by each robot: 72.4 m

Field Experiments (11 Robots)

77

IRIM Lab
Georgia Tech

Size of the map: 55 m X 61 m
Average Number of Poses: 3995

Average Distance travelled by each robot: 72.4 m

Performance of our approach on
Field Data

78

So far…

reduce the communication bandwidth
and the memory

outputs a human understandable map

improves the robustness and scalability

Using objects as landmarks

state of art distributed optimizer

distributed SLAM

1.

2.

3.

+

79

So far…

reduce the communication bandwidth
and the memory

outputs a human understandable map

improves the robustness and scalability

Using objects as landmarks

state of art distributed optimizer

distributed SLAM

1.

2.

3.

+
Distributed Gauss-Seidel

80

So far…

reduce the communication bandwidth
and the memory

outputs a human understandable map

improves the robustness and scalability

Using objects as landmarks

state of art distributed optimizer

distributed SLAM

1.

2.

3.

+
Distributed Gauss-Seidel

Linear in Communication

81

So far…

reduce the communication bandwidth
and the memory

outputs a human understandable map

improves the robustness and scalability

Using objects as landmarks

state of art distributed optimizer

distributed SLAM

1.

2.

3.

+
Distributed Gauss-Seidel

Linear in Communication

• Robust to bad initialization
• Resilient to measurement noise
• Scalable in the number of robots

82

Remaining Issues…

reduce the communication bandwidth
and the memory

outputs a human understandable map

improves the robustness and scalability

Using objects as landmarks

state of art distributed optimizer

distributed SLAM

1.

2.

3.

+

Requires exchange of 3D
point clouds to establish
communication link among
robots.

Each robot has to store point
cloud map which increases
their memory requirement

83

Outline

84

1. Distributed Gauss-Seidel Approach
(state of art distributed optimizer)

2. Distributed Object-based SLAM with Known Object Models
(using objects as landmarks)

3. Distributed Object-based SLAM with Joint Object Modeling and Mapping
(jointly model objects along with SLAM)

4. Conclusions and Future Work

Outline

84

1. Distributed Gauss-Seidel Approach
(state of art distributed optimizer)

2. Distributed Object-based SLAM with Known Object Models
(using objects as landmarks)

3. Distributed Object-based SLAM with Joint Object Modeling and Mapping
(jointly model objects along with SLAM)

4. Conclusions and Future Work

Why should we use objects?

85

1. Reduces memory requirements and information exchange among robots compared to
point cloud based representation

~13 MB ~1 KB

>

Why should we use objects?

86

1. Reduces memory requirements and information exchange among robots compared to
point cloud based representation

2. Objects are more discriminative as compared to point clouds.

each point looks similar
to the points in its surrounding

objects look dissimilar
to the points in its

surrounding

Why should we use objects?

87

1. Reduces memory requirements and information exchange among robots compared to
point cloud based representation

2. Objects are more discriminative as compared to point clouds.

3. Reduces the computational complexity of SLAM.

camera

Why should we use objects?

88

1. Reduces memory requirements and information exchange among robots compared to
point cloud based representation

2. Objects are more discriminative as compared to point clouds.

3. Reduces the computational complexity of SLAM.

4. Results in maps that are easier for humans to understand.

Why should we use objects?

89

Related Work

90

Related Work

90

• B. Kuipers (AI 2000)
• Mozos et al. (RAS 2007)
• Nieto et al. (IROS 2010)
• Koppula et al. (NIPS 2011)
• Pronobis et al. (IJRR 2009, ICRA 2012)
• Kim et al. (TOG 2012)
• Dame et al. (CVPR 2013)
• Finman et al. (ECMR 2013)
• Kundu el al. (ECCV 2014)
• Valentin et al. (TOG 2015)
• Vineet et al. (ICRA 2015)
• Miksik et al. (IROS 2015)
• McCormac et al. (arXiv 2016)

Dense Semantic Mapping

Related Work

90

• B. Kuipers (AI 2000)
• Mozos et al. (RAS 2007)
• Nieto et al. (IROS 2010)
• Koppula et al. (NIPS 2011)
• Pronobis et al. (IJRR 2009, ICRA 2012)
• Kim et al. (TOG 2012)
• Dame et al. (CVPR 2013)
• Finman et al. (ECMR 2013)
• Kundu el al. (ECCV 2014)
• Valentin et al. (TOG 2015)
• Vineet et al. (ICRA 2015)
• Miksik et al. (IROS 2015)
• McCormac et al. (arXiv 2016)

Dense Semantic Mapping

• Castle et al. (ICRA 2007)
• Ranganthan and Dellaert (RSS 2007)
• Rogers et al. (IROS 2011)
• Civera et al. (IROS 2011)
• Trevor et al. (ICRA 2012, HRI 2013)
• Bao et al. (CVPR 2012)
• Salas-Moreno et al. (CVPR 2013)
• Song and Chandraker (CVPR 2015)
• Pillai et al. (RSS 2015)
• Singhal et al. (arXiv 2016)
• Sunderhauf et al. (arXiv 2016)

Object level Mapping

Related Work

90

• B. Kuipers (AI 2000)
• Mozos et al. (RAS 2007)
• Nieto et al. (IROS 2010)
• Koppula et al. (NIPS 2011)
• Pronobis et al. (IJRR 2009, ICRA 2012)
• Kim et al. (TOG 2012)
• Dame et al. (CVPR 2013)
• Finman et al. (ECMR 2013)
• Kundu el al. (ECCV 2014)
• Valentin et al. (TOG 2015)
• Vineet et al. (ICRA 2015)
• Miksik et al. (IROS 2015)
• McCormac et al. (arXiv 2016)

Dense Semantic Mapping

• Castle et al. (ICRA 2007)
• Ranganthan and Dellaert (RSS 2007)
• Rogers et al. (IROS 2011)
• Civera et al. (IROS 2011)
• Trevor et al. (ICRA 2012, HRI 2013)
• Bao et al. (CVPR 2012)
• Salas-Moreno et al. (CVPR 2013)
• Song and Chandraker (CVPR 2015)
• Pillai et al. (RSS 2015)
• Singhal et al. (arXiv 2016)
• Sunderhauf et al. (arXiv 2016)

Object level Mapping

• Fast and accurate object detection using Convolutional Neural Networks.

Related Work

90

• B. Kuipers (AI 2000)
• Mozos et al. (RAS 2007)
• Nieto et al. (IROS 2010)
• Koppula et al. (NIPS 2011)
• Pronobis et al. (IJRR 2009, ICRA 2012)
• Kim et al. (TOG 2012)
• Dame et al. (CVPR 2013)
• Finman et al. (ECMR 2013)
• Kundu el al. (ECCV 2014)
• Valentin et al. (TOG 2015)
• Vineet et al. (ICRA 2015)
• Miksik et al. (IROS 2015)
• McCormac et al. (arXiv 2016)

Dense Semantic Mapping

• Castle et al. (ICRA 2007)
• Ranganthan and Dellaert (RSS 2007)
• Rogers et al. (IROS 2011)
• Civera et al. (IROS 2011)
• Trevor et al. (ICRA 2012, HRI 2013)
• Bao et al. (CVPR 2012)
• Salas-Moreno et al. (CVPR 2013)
• Song and Chandraker (CVPR 2015)
• Pillai et al. (RSS 2015)
• Singhal et al. (arXiv 2016)
• Sunderhauf et al. (arXiv 2016)

Object level Mapping

• Fast and accurate object detection using Convolutional Neural Networks.
• Extend the current approaches to multi robot setting.

Distributed Object-based SLAM

91

Distributed Object-based SLAM

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

robot

91

Distributed Object-based SLAM

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

robot

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

robot

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

91

Distributed Object-based SLAM

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

robot

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

robot

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

robot poses

91

Distributed Object-based SLAM

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

robot

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

robot

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

each robot detects object and adds object landmarks locally
92

Distributed Object-based SLAM

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

robot

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

robot

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

each robot detects object and adds object landmarks locally
92

Distributed Object-based SLAM

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

robot

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

robot

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

each robot detects object and adds object landmarks locally
92

Distributed Object-based SLAM

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

robot

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

robot

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

each robot detects object and adds object landmarks locally

object landmarks

92

Distributed Object-based SLAM

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

robot

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

robot

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

each robot detects object and adds object landmarks locally

object landmarks

92

Assumptions:
i. 3D textured model of each

object instance is known and is
used for object pose estimation.

ii. Object detection and pose
estimation parameters are
chosen conservatively to avoid
false positives.

Distributed Object-based SLAM

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

robot

robot

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

each robot communicates the list of objects to the other robot
93

club chair:
cantilever chair:

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

club chair:
cantilever chair:

Assumption: initial position
of each robot is known to all

the other robots

Distributed Object-based SLAM

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

robot

robot

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

each robot communicates the list of objects to the other robot
93

club chair:
cantilever chair:

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

club chair:
cantilever chair:

Assumption: initial position
of each robot is known to all

the other robots

Distributed Object-based SLAM

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

robot

robot

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

loop closure constraints are added between the common set of objects seen by both the robots
94

Distributed Object-based SLAM

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

robot

robot

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

loop closure constraints are added between the common set of objects seen by both the robots
94

Distributed Object-based SLAM

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

robot

robot

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

loop closure constraints are added between the common set of objects seen by both the robots

Inter-robot
 object-object factor

94

Distributed Object-based SLAM

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

robot

robot

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

Factor graph optimized using Distributed Gauss-Seidel Algorithm
95

Distributed Object-based SLAM
Hessian Matrix

robot ↵

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

robot �

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

H↵↵ H↵�

H��H�↵

Distributed Object-based SLAM
Hessian Matrix

robot ↵

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

robot �

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

H↵↵ H↵�

H��H�↵

y↵ =
�
x↵i�1 , x↵i , x↵i+1 , o↵k , o↵k+1

y� =
�
x�i�1 , x�i , x�i+1 , o�k , o�k+1

xi = (Ri, ti) 2 SE (3)

�
R12, t12

�

�
R23, t23

�

�
R34, t34

�

�
R45, t45

�

�
R56, t56

�

�
R67, t67

�

�
R78, t78

�

zij =
�
Rij , tij

�

Rij = R

T
i Rj . noise

tij = R

T
i (tj � ti) + noise

min
ti,Ri

X

(i,j)2E

!

2
t ktj � ti �Ritijk2 + !

2
RkRj �RiR

i
jk2F

a0

a1

1

y↵ =
�
x↵i�1 , x↵i , x↵i+1 , o↵k , o↵k+1

y� =
�
x�i�1 , x�i , x�i+1 , o�k , o�k+1

xi = (Ri, ti) 2 SE (3)

�
R12, t12

�

�
R23, t23

�

�
R34, t34

�

�
R45, t45

�

�
R56, t56

�

�
R67, t67

�

�
R78, t78

�

zij =
�
Rij , tij

�

Rij = R

T
i Rj . noise

tij = R

T
i (tj � ti) + noise

min
ti,Ri

X

(i,j)2E

!

2
t ktj � ti �Ritijk2 + !

2
RkRj �RiR

i
jk2F

a0

a1

1

Assuming

Distributed Object-based SLAM
Hessian Matrix

H
o

: µ = 1.0

H1 : µ > 1.0

yk+1
↵

= H�1
↵↵

�
�H

↵�

yk

�

+ g
↵

�

yk+1
�

= H�1
��

�
�H

�↵

yk

↵

+ g
�

�

1

H
o

: µ = 1.0

H1 : µ > 1.0

yk+1
↵

= H�1
↵↵

�
�H

↵�

yk

�

+ g
↵

�

yk+1
�

= H�1
��

�
�H

�↵

yk

↵

+ g
�

�

1

Iterate

robot ↵

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

robot �

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

H↵↵ H↵�

H��H�↵

Object Dataset

BigBIRD Dataset

BigBIRD: A Large-Scale 3D Database of Object Instances
Singh et al. (ICRA 2014)98

Object Dataset

BigBIRD Dataset

• Contains high resolution images for training the object detector.

BigBIRD: A Large-Scale 3D Database of Object Instances
Singh et al. (ICRA 2014)98

Object Dataset

BigBIRD Dataset

• Contains high resolution images for training the object detector.

• Contains 3D textured object models for object pose estimation.

BigBIRD: A Large-Scale 3D Database of Object Instances
Singh et al. (ICRA 2014)98

Object Dataset
BigBIRD Dataset

360 turntable video

Object Dataset
BigBIRD Dataset

360 turntable video

Object Dataset
BigBIRD Dataset

Motion capture data annotated using Sun3D annotator

SUN3D: A Database of Big Spaces Reconstructed using SfM and Object Labels
Xiao et al. (ICCV 2013)

Pose estimates from Motion Capture data is used by Sun3D annotator to automatically propagate annotations.

Object Dataset
BigBIRD Dataset

Motion capture data annotated using Sun3D annotator

SUN3D: A Database of Big Spaces Reconstructed using SfM and Object Labels
Xiao et al. (ICCV 2013)

Pose estimates from Motion Capture data is used by Sun3D annotator to automatically propagate annotations.

Object Dataset
BigBIRD Dataset

SLAM data annotated using Sun3D annotator

SUN3D: A Database of Big Spaces Reconstructed using SfM and Object Labels
Xiao et al. (ICCV 2013)

Pose estimates from SLAM data is used by Sun3D annotator to automatically propagate annotations.

Object Dataset
BigBIRD Dataset

SLAM data annotated using Sun3D annotator

SUN3D: A Database of Big Spaces Reconstructed using SfM and Object Labels
Xiao et al. (ICCV 2013)

Pose estimates from SLAM data is used by Sun3D annotator to automatically propagate annotations.

Object Detection
BigBIRD Dataset

360 turntable video

Motion capture data annotated
 using Sun3D annotator

SLAM data annotated
 using Sun3D annotator

You Only Look Once: Unified, Real-Time Object Detection
 Redmon et al. (CVPR 2016)

YOLO Detector
448

448

3

7

7

Conv. Layer
7x7x64-s-2

Maxpool Layer
2x2-s-2

3
3

112

112

192

3
3

56

56

256

Conn. Layer

4096

Conn. LayerConv. Layer
3x3x192

Maxpool Layer
2x2-s-2

Conv. Layers
1x1x128
3x3x256
1x1x256
3x3x512

Maxpool Layer
2x2-s-2

3
3

28

28

512

Conv. Layers
1x1x256
3x3x512
1x1x512

3x3x1024
Maxpool Layer

2x2-s-2

3
3

14

14

1024

Conv. Layers
1x1x512

3x3x1024
3x3x1024

3x3x1024-s-2

3

3

7

7
1024

7

7
1024

7

7
30

} ×4 } ×2
Conv. Layers
3x3x1024
3x3x1024

Figure 3: The Architecture. Our detection network has 24 convolutional layers followed by 2 fully connected layers. Alternating 1⇥ 1
convolutional layers reduce the features space from preceding layers. We pretrain the convolutional layers on the ImageNet classification
task at half the resolution (224⇥ 224 input image) and then double the resolution for detection.

The final output of our network is the 7⇥ 7⇥ 30 tensor
of predictions.

2.2. Training

We pretrain our convolutional layers on the ImageNet
1000-class competition dataset [30]. For pretraining we use
the first 20 convolutional layers from Figure 3 followed by a
average-pooling layer and a fully connected layer. We train
this network for approximately a week and achieve a single
crop top-5 accuracy of 88% on the ImageNet 2012 valida-
tion set, comparable to the GoogLeNet models in Caffe’s
Model Zoo [24]. We use the Darknet framework for all
training and inference [26].

We then convert the model to perform detection. Ren et
al. show that adding both convolutional and connected lay-
ers to pretrained networks can improve performance [29].
Following their example, we add four convolutional lay-
ers and two fully connected layers with randomly initialized
weights. Detection often requires fine-grained visual infor-
mation so we increase the input resolution of the network
from 224⇥ 224 to 448⇥ 448.

Our final layer predicts both class probabilities and
bounding box coordinates. We normalize the bounding box
width and height by the image width and height so that they
fall between 0 and 1. We parametrize the bounding box x

and y coordinates to be offsets of a particular grid cell loca-
tion so they are also bounded between 0 and 1.

We use a linear activation function for the final layer and
all other layers use the following leaky rectified linear acti-
vation:

�(x) =

(
x, if x > 0

0.1x, otherwise
(2)

We optimize for sum-squared error in the output of our

model. We use sum-squared error because it is easy to op-
timize, however it does not perfectly align with our goal of
maximizing average precision. It weights localization er-
ror equally with classification error which may not be ideal.
Also, in every image many grid cells do not contain any
object. This pushes the “confidence” scores of those cells
towards zero, often overpowering the gradient from cells
that do contain objects. This can lead to model instability,
causing training to diverge early on.

To remedy this, we increase the loss from bounding box
coordinate predictions and decrease the loss from confi-
dence predictions for boxes that don’t contain objects. We
use two parameters, �coord and �noobj to accomplish this. We
set �coord = 5 and �noobj = .5.

Sum-squared error also equally weights errors in large
boxes and small boxes. Our error metric should reflect that
small deviations in large boxes matter less than in small
boxes. To partially address this we predict the square root
of the bounding box width and height instead of the width
and height directly.

YOLO predicts multiple bounding boxes per grid cell.
At training time we only want one bounding box predictor
to be responsible for each object. We assign one predictor
to be “responsible” for predicting an object based on which
prediction has the highest current IOU with the ground
truth. This leads to specialization between the bounding box
predictors. Each predictor gets better at predicting certain
sizes, aspect ratios, or classes of object, improving overall
recall.

During training we optimize the following, multi-part

Trained Network

Detects objects at 45fps

102

Object Detection
BigBIRD Dataset

360 turntable video

Motion capture data annotated
 using Sun3D annotator

SLAM data annotated
 using Sun3D annotator

You Only Look Once: Unified, Real-Time Object Detection
 Redmon et al. (CVPR 2016)

YOLO Detector
448

448

3

7

7

Conv. Layer
7x7x64-s-2

Maxpool Layer
2x2-s-2

3
3

112

112

192

3
3

56

56

256

Conn. Layer

4096

Conn. LayerConv. Layer
3x3x192

Maxpool Layer
2x2-s-2

Conv. Layers
1x1x128
3x3x256
1x1x256
3x3x512

Maxpool Layer
2x2-s-2

3
3

28

28

512

Conv. Layers
1x1x256
3x3x512
1x1x512

3x3x1024
Maxpool Layer

2x2-s-2

3
3

14

14

1024

Conv. Layers
1x1x512

3x3x1024
3x3x1024

3x3x1024-s-2

3

3

7

7
1024

7

7
1024

7

7
30

} ×4 } ×2
Conv. Layers
3x3x1024
3x3x1024

Figure 3: The Architecture. Our detection network has 24 convolutional layers followed by 2 fully connected layers. Alternating 1⇥ 1
convolutional layers reduce the features space from preceding layers. We pretrain the convolutional layers on the ImageNet classification
task at half the resolution (224⇥ 224 input image) and then double the resolution for detection.

The final output of our network is the 7⇥ 7⇥ 30 tensor
of predictions.

2.2. Training

We pretrain our convolutional layers on the ImageNet
1000-class competition dataset [30]. For pretraining we use
the first 20 convolutional layers from Figure 3 followed by a
average-pooling layer and a fully connected layer. We train
this network for approximately a week and achieve a single
crop top-5 accuracy of 88% on the ImageNet 2012 valida-
tion set, comparable to the GoogLeNet models in Caffe’s
Model Zoo [24]. We use the Darknet framework for all
training and inference [26].

We then convert the model to perform detection. Ren et
al. show that adding both convolutional and connected lay-
ers to pretrained networks can improve performance [29].
Following their example, we add four convolutional lay-
ers and two fully connected layers with randomly initialized
weights. Detection often requires fine-grained visual infor-
mation so we increase the input resolution of the network
from 224⇥ 224 to 448⇥ 448.

Our final layer predicts both class probabilities and
bounding box coordinates. We normalize the bounding box
width and height by the image width and height so that they
fall between 0 and 1. We parametrize the bounding box x

and y coordinates to be offsets of a particular grid cell loca-
tion so they are also bounded between 0 and 1.

We use a linear activation function for the final layer and
all other layers use the following leaky rectified linear acti-
vation:

�(x) =

(
x, if x > 0

0.1x, otherwise
(2)

We optimize for sum-squared error in the output of our

model. We use sum-squared error because it is easy to op-
timize, however it does not perfectly align with our goal of
maximizing average precision. It weights localization er-
ror equally with classification error which may not be ideal.
Also, in every image many grid cells do not contain any
object. This pushes the “confidence” scores of those cells
towards zero, often overpowering the gradient from cells
that do contain objects. This can lead to model instability,
causing training to diverge early on.

To remedy this, we increase the loss from bounding box
coordinate predictions and decrease the loss from confi-
dence predictions for boxes that don’t contain objects. We
use two parameters, �coord and �noobj to accomplish this. We
set �coord = 5 and �noobj = .5.

Sum-squared error also equally weights errors in large
boxes and small boxes. Our error metric should reflect that
small deviations in large boxes matter less than in small
boxes. To partially address this we predict the square root
of the bounding box width and height instead of the width
and height directly.

YOLO predicts multiple bounding boxes per grid cell.
At training time we only want one bounding box predictor
to be responsible for each object. We assign one predictor
to be “responsible” for predicting an object based on which
prediction has the highest current IOU with the ground
truth. This leads to specialization between the bounding box
predictors. Each predictor gets better at predicting certain
sizes, aspect ratios, or classes of object, improving overall
recall.

During training we optimize the following, multi-part

Trained Network

Detects objects at 45fps

102

Simulation Experiments
Tested the approach in simulation on two scenarios over 10 Monte Carlo runs.

Gray = Centralized Estimate
Red = Distributed Estimate

Distributed estimate converges to the
centralized estimate 103

Simulation Experiments
Tested the approach in simulation on two scenarios over 10 Monte Carlo runs.

Gray = Centralized Estimate
Red = Distributed Estimate

Distributed estimate converges to the
centralized estimate 103

Scalable in the number of robots

104

Resilient to Noise

105

Field Experiments
Object detection and SLAM

Object landmarks

Detected objects are added as landmarks in the map

Green = Robot 0 Red = Robot 1
106

Field Experiments
Object detection and SLAM

Object landmarks

Detected objects are added as landmarks in the map

Green = Robot 0 Red = Robot 1
106

Field Experiments

Green = Robot 0 Red = Robot 1

Inter-Robot Loop Closure

Loop closure factor is added when two robots see the same object

107

Field Experiments

Green = Robot 0 Red = Robot 1

Inter-Robot Loop Closure

Loop closure factor is added when two robots see the same object

107

Field Experiments

Green = Robot 0 Red = Robot 1

Inter-Robot Loop Closure

Loop Closure

Loop closure factor is added when two robots see the same object

107

Field Experiments

Green = Robot 0 Red = Robot 1

Experimented with 18 objects in a large scale environment.

108

Field Experiments

Green = Robot 0 Red = Robot 1

Experimented with 18 objects in a large scale environment.

108

Field Experiments

Estimated trajectory Approximate trajectory
IN

S
IT

E
 V

is
u
al

-F
M

 2
.5

2

D
R

A
W

IN
G

:
0
5
0
.2

.I
N

S

 S

C
A

L
E

:
1
"

=
 2

7
.1

'
 P

L
O

T
T

E
D

:
0
2
/0

4
/1

0

109

We tested the proposed approach on field data collected by two Jackal
robots, moving in different indoor settings.

Field Experiments

110

Accuracy
Distributed Centralized

Stadium-1

Stadium-2

House

Distributed estimate converges to the centralized estimate

111

Memory Requirements

Scenario Average Per Robot Memory Requirement

Point Cloud Map Object level Map

Stadium-1 1.2 GB 1.9 MB

Stadium-2 1.4 GB 1.9 MB

House 2.1 GB 1.9 MB

112

xi = (Ri, ti) 2 SE (3)

�
R12, t12

�

�
R23, t23

�

�
R34, t34

�

�
R45, t45

�

�
R56, t56

�

�
R67, t67

�

�
R78, t78

�

zij =
�
Rij , tij

�

Rij = R

T
i Rj . noise

tij = R

T
i (tj � ti) + noise

min
ti,Ri

X

(i,j)2E

!

2
t ktj � ti �Ritijk2 + !

2
RkRj �RiR

i
jk2F

⇡

1

xi = (Ri, ti) 2 SE (3)

�
R12, t12

�

�
R23, t23

�

�
R34, t34

�

�
R45, t45

�

�
R56, t56

�

�
R67, t67

�

�
R78, t78

�

zij =
�
Rij , tij

�

Rij = R

T
i Rj . noise

tij = R

T
i (tj � ti) + noise

min
ti,Ri

X

(i,j)2E

!

2
t ktj � ti �Ritijk2 + !

2
RkRj �RiR

i
jk2F

⇡

1

xi = (Ri, ti) 2 SE (3)

�
R12, t12

�

�
R23, t23

�

�
R34, t34

�

�
R45, t45

�

�
R56, t56

�

�
R67, t67

�

�
R78, t78

�

zij =
�
Rij , tij

�

Rij = R

T
i Rj . noise

tij = R

T
i (tj � ti) + noise

min
ti,Ri

X

(i,j)2E

!

2
t ktj � ti �Ritijk2 + !

2
RkRj �RiR

i
jk2F

⇡

1

+ Memory required to store
object models

Memory Requirements

Object level map requires three orders of magnitude less
memory as compared to Point cloud map

Scenario Average Per Robot Memory Requirement

Point Cloud Map Object level Map

Stadium-1 1.2 GB 1.9 MB

Stadium-2 1.4 GB 1.9 MB

House 2.1 GB 1.9 MB

113

xi = (Ri, ti) 2 SE (3)

�
R12, t12

�

�
R23, t23

�

�
R34, t34

�

�
R45, t45

�

�
R56, t56

�

�
R67, t67

�

�
R78, t78

�

zij =
�
Rij , tij

�

Rij = R

T
i Rj . noise

tij = R

T
i (tj � ti) + noise

min
ti,Ri

X

(i,j)2E

!

2
t ktj � ti �Ritijk2 + !

2
RkRj �RiR

i
jk2F

⇡

1

xi = (Ri, ti) 2 SE (3)

�
R12, t12

�

�
R23, t23

�

�
R34, t34

�

�
R45, t45

�

�
R56, t56

�

�
R67, t67

�

�
R78, t78

�

zij =
�
Rij , tij

�

Rij = R

T
i Rj . noise

tij = R

T
i (tj � ti) + noise

min
ti,Ri

X

(i,j)2E

!

2
t ktj � ti �Ritijk2 + !

2
RkRj �RiR

i
jk2F

⇡

1

xi = (Ri, ti) 2 SE (3)

�
R12, t12

�

�
R23, t23

�

�
R34, t34

�

�
R45, t45

�

�
R56, t56

�

�
R67, t67

�

�
R78, t78

�

zij =
�
Rij , tij

�

Rij = R

T
i Rj . noise

tij = R

T
i (tj � ti) + noise

min
ti,Ri

X

(i,j)2E

!

2
t ktj � ti �Ritijk2 + !

2
RkRj �RiR

i
jk2F

⇡

1

+ Memory required to store
object models

Communication Bandwidth
Requirements

114

Communication Bandwidth =

Amount of communication
required to perform distributed

optimization given the
communication link.

The amount of communication
required to establish that link.

+

Distributed Gauss-Seidel

Distributed Object-based SLAM

Communication Bandwidth
Requirements

Scenario Average Communication Bandwidth Requirement

Point Cloud Map Object level Map

Stadium-1 19 MB 0.16 KB

Stadium-2 14 MB 0.12 KB

House 16 MB 0.22 KB

115

Communication Bandwidth is the amount of communication
required to establish to the link.

Communication Bandwidth
Requirements

Scenario Average Communication Bandwidth Requirement

Point Cloud Map Object level Map

Stadium-1 19 MB 0.16 KB

Stadium-2 14 MB 0.12 KB

House 16 MB 0.22 KB

Object level map requires four orders of magnitude less
communication bandwidth as compared to Point cloud map

116

So far…

reduce the communication bandwidth
and the memory

outputs a human understandable map

improves the robustness and scalability

Using objects as landmarks

state of art distributed optimizer

distributed SLAM

1.

2.

3.

+

117

So far…

reduce the communication bandwidth
and the memory

outputs a human understandable map

improves the robustness and scalability

Using objects as landmarks

state of art distributed optimizer

distributed SLAM

1.

2.

3.

+

118

Distributed Object based SLAM

So far…

reduce the communication bandwidth
and the memory

outputs a human understandable map

improves the robustness and scalability

Using objects as landmarks

state of art distributed optimizer

distributed SLAM

1.

2.

3.

+

119

Distributed Object based SLAM

Using objects reduces the
communication bandwidth
and the memory requirements

So far…

reduce the communication bandwidth
and the memory

outputs a human understandable map

improves the robustness and scalability

Using objects as landmarks

state of art distributed optimizer

distributed SLAM

1.

2.

3.

+

120

Distributed Object based SLAM

• Robust to bad initialization
• Resilient to measurement noise
• Scalable in the number of robots

Using objects reduces the
communication bandwidth
and the memory requirements

So far…

reduce the communication bandwidth
and the memory

outputs a human understandable map

improves the robustness and scalability

Using objects as landmarks

state of art distributed optimizer

distributed SLAM

1.

2.

3.

+

121

Distributed Object based SLAM

• Robust to bad initialization
• Resilient to measurement noise
• Scalable in the number of robots

Resulting object level map can be
used for manipulation tasks like pick
and place

Using objects reduces the
communication bandwidth
and the memory requirements

So far…

reduce the communication bandwidth
and the memory

outputs a human understandable map

improves the robustness and scalability

Using objects as landmarks

state of art distributed optimizer

distributed SLAM

1.

2.

3.

+

122

Distributed Object based SLAM

• Robust to bad initialization
• Resilient to measurement noise
• Scalable in the number of robots

Distributed Gauss-Seidel

Resulting object level map can be
used for manipulation tasks like pick
and place

Using objects reduces the
communication bandwidth
and the memory requirements

Remaining Issues…

reduce the communication bandwidth
and the memory

outputs a human understandable map

improves the robustness and scalability

Using objects as landmarks

state of art distributed optimizer

distributed SLAM

1.

2.

3.

+

123

Won’t generalize to
unseen object instances

Outline

124

1. Distributed Gauss-Seidel Approach
(state of art distributed optimizer)

2. Distributed Object-based SLAM with Known Object Models
(using objects as landmarks)

3. Distributed Object-based SLAM with Joint Object Modeling and Mapping
(jointly model objects along with SLAM)

4. Conclusions and Future Work

Outline

124

1. Distributed Gauss-Seidel Approach
(state of art distributed optimizer)

2. Distributed Object-based SLAM with Known Object Models
(using objects as landmarks)

3. Distributed Object-based SLAM with Joint Object Modeling and Mapping
(jointly model objects along with SLAM)

4. Conclusions and Future Work

Outline

125

1. Distributed Gauss-Seidel Approach
(state of art distributed optimizer)

2. Distributed Object-based SLAM with Known Object Models
(using objects as landmarks)

3. Distributed Object-based SLAM with Joint Object Modeling and Mapping
(jointly model objects along with SLAM)

4. Conclusions and Future Work

Motivation

126

• Can be challenging to store a model of all the object instances due to large intra-class
variation.

Google 3D warehouse!

(about 2.5 million models)

Motivations

c.f. Changhyun Choi et al.

Motivation

127

• Can be challenging to store a model of all the object instances due to large intra-class
variation.

• Searching through all the object models for object pose estimation can be
computationally demanding.

Motivation

128

• Can be challenging to store a model of all the object instances due to large intra-class
variation.

• Searching through all the object models for object pose estimation can be
computationally demanding.

• It won’t generalize to unseen instances of the same object category as well.

object pose estimation will fail

Distributed Object-based SLAM
with Joint Object Modeling and Mapping

129

Propose to extend the previous work to the case where object models are previously
unknown and are modeled jointly with Distributed Object based SLAM.

SLAM with Object Discovery, Modeling and Mapping
 Choudhary et al. (IROS 2014)

Distributed Object-based SLAM
with Joint Object Modeling and Mapping

129

Propose to extend the previous work to the case where object models are previously
unknown and are modeled jointly with Distributed Object based SLAM.

SLAM with Object Discovery, Modeling and Mapping
 Choudhary et al. (IROS 2014)

130

Object-based SLAM
with Joint Object Modeling and Mapping

each robot detects object category and models them at the
 instance level in the local coordinate frame.

131

Object-based SLAM
with Joint Object Modeling and Mapping

incomplete model

chair 1

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

132

Object-based SLAM
with Joint Object Modeling and Mapping

incomplete model

chair 1 chair 2

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

133

Object-based SLAM
with Joint Object Modeling and Mapping

incomplete model

chair 1 chair 2

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

134

Object-based SLAM
with Joint Object Modeling and Mapping

chair 1 chair 2

chair 4 chair 3

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

When the robot is back to the same area after a loop, it again
models the objects in the same area

135

Object-based SLAM
with Joint Object Modeling and Mapping

chair 1 chair 2

chair 4 chair 3

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

The object-object loop closure thread runs in parallel and matches the modeled objects

136

Object-based SLAM
with Joint Object Modeling and Mapping

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

xj ,xj+1,xj�1,xi�1,xi,xi+1,ol,ol+1,ok,ok+1

1

A factor between the matching object landmarks is added which is then optimized
using Gauss-Newton method.

137

Object-based SLAM
with Joint Object Modeling and Mapping

RGBD Frame Non-planar
segments

extract
planes

detect
objects

Object
Segments

Planar Segments

Object Segment

138

Object-based SLAM
with Joint Object Modeling and Mapping

Aggregated
Object

Segments

data
associate

RGBD Frame Non-planar
segments

extract
planes

detect
objects

Object
Segments

Data Associate against all the
aggregated object segments in co-
visible frames using ICP-like score:

if 50% of the points in an object segment
have a distance of 2 cm or less to the

nearest aggregated object segment, it is
considered a match

Object-based SLAM
with Joint Object Modeling and Mapping

Aggregated
Object

Segments

data
associate

if visible in more
than K frames and

 aggregated max category
probability is > threshold

Add Object as
Landmark

RGBD Frame Non-planar
segments

extract
planes

detect
objects

Object
Segments

Object-Object
loop closure

using 3DMatch 3DMatch: Learning Local Geometric
Descriptors from 3D Reconstructions

Zeng et al. (CVPR 2017)

sample
object models

Object-based SLAM
with Joint Object Modeling and Mapping

Aggregated
Object

Segments

data
associate

if visible in more
than K frames and

 aggregated max category
probability is > threshold

Add Object as
Landmark

RGBD Frame Non-planar
segments

extract
planes

detect
objects

Object
Segments

Object-Object
loop closure

using 3DMatch 3DMatch: Learning Local Geometric
Descriptors from 3D Reconstructions

Zeng et al. (CVPR 2017)

sample
object models

Experiments
(UW RGB-D Scenes v2 dataset)

Trajectory Error

Our approach is as accurate as ORB-SLAM2
Object detector is fine-tuned on UW Scenes v1 and UW Object dataset

Ab
so

lu
te

 T
ra

je
ct

or
y

Er
ro

r (
m

)

Scene ID

Experiments
(UW RGB-D Scenes v2 dataset)

Memory Comparison

Our approach requires much less memory than ORB-SLAM2

Scene ID

M
em

or
y

(in
 M

B)

Experiments
(Large-Scale handheld dataset)

Pre-trained COCO Object detector is used

Object-SLAM ORB-SLAM2

Size of the map: 21 m X 21 m
Number of Poses: 5284

Distance travelled: 93.09 m

142

Experiments
(Large-Scale handheld dataset)

Pre-trained COCO Object detector is used

Object-SLAM ORB-SLAM2

Size of the map: 21 m X 21 m
Number of Poses: 5284

Distance travelled: 93.09 m

142

Experiments
(Large-Scale handheld dataset)

Pre-trained COCO Object detector is used

Object-SLAM ORB-SLAM2

Size of the map: 21 m X 21 m
Number of Poses: 5284

Distance travelled: 93.09 m

Kintinuous

143

Experiments
(Large-Scale handheld dataset)

Pre-trained COCO Object detector is used

Object-SLAM ORB-SLAM2

Size of the map: 21 m X 21 m
Number of Poses: 5284

Distance travelled: 93.09 m

Kintinuous

143

Experiments
(Large-Scale handheld dataset)

Pre-trained COCO Object detector is used

Object-SLAM ORB-SLAM2

Size of the map: 19 m X 18 m
Number of Poses: 6382

Distance travelled: 102.84 m

144

Experiments
(Large-Scale handheld dataset)

Pre-trained COCO Object detector is used

Object-SLAM ORB-SLAM2

Size of the map: 19 m X 18 m
Number of Poses: 6382

Distance travelled: 102.84 m

144

Experiments
(Large-Scale handheld dataset)

Pre-trained COCO Object detector is used

Object-SLAM ORB-SLAM2

Size of the map: 19 m X 18 m
Number of Poses: 6382

Distance travelled: 102.84 m

Kintinuous

145

Experiments
(Large-Scale handheld dataset)

Pre-trained COCO Object detector is used

Object-SLAM ORB-SLAM2

Size of the map: 19 m X 18 m
Number of Poses: 6382

Distance travelled: 102.84 m

Kintinuous

145

Experiments
(Large-Scale handheld dataset)

Trajectory Error (w.r.t ORB-SLAM2) Memory Requirements

AT
E

w.
r.t

 O
RB

-S
LA

M
2

(m
)

Scene Scene
M

em
or

y
(in

 M
B)

146

Experiments (Large-Scale Robot dataset)

Object detector is fine-tuned on BigBird dataset

Object-SLAM ORB-SLAM2

Klaus

Military Training
Facility

IRIM

CPL

147

Experiments (Large-Scale Robot dataset)

Trajectory Error (w.r.t ORB-SLAM2) Memory Requirements

Scene
M

em
or

y
(in

 M
B)

Scene ATE (m)

Klaus 0.28

Military Facility 0.15

IRIM 0.10

CPL 0.32

148

each robot will perform object slam with joint object modeling and mapping
149

Distributed Object-based SLAM
with Joint Object Modeling and Mapping

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

incomplete model
x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

chair 1 chair 2

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

150

Distributed Object-based SLAM
with Joint Object Modeling and Mapping

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

robot

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

chair 1 chair 2

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

robot

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

chair 2 chair 1

each robot will perform object slam with joint object modeling and mapping

each robot communicates object category and the corresponding models to the other robot
151

Distributed Object-based SLAM
with Joint Object Modeling and Mapping

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

robot

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

chair 1 chair 2

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

robot

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

chair 2 chair 1

chair

chair

chair
chair

each robot communicates object category and the corresponding models to the other robot
151

Distributed Object-based SLAM
with Joint Object Modeling and Mapping

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

robot

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

chair 1 chair 2

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

robot

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

chair 2 chair 1

chair

chair

chair
chair

modeled objects in one robot are matched to the corresponding models from the other robot
152

Distributed Object-based SLAM
with Joint Object Modeling and Mapping

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

robot

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

chair 1 chair 2

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

robot

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

chair 2 chair 1

Relative pose estimated using 3DMatch is used as the measurement
in inter-robot object-object factor

153

Distributed Object-based SLAM
with Joint Object Modeling and Mapping

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

robot

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

robot

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

154

Distributed Object-based SLAM
with Joint Object Modeling and Mapping

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

robot

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

robot

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

Factor graph optimized using Distributed Gauss-Seidel Algorithm

155

Distributed Object-based SLAM
with Joint Object Modeling and Mapping

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

robot

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x�i�1

x�i

x�i+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

↵

�

1

robot

x↵i�1

x↵i

x↵i+1

x↵i+2

x�i�1

x�i

x�i+1

o↵k

o�k

o↵k+1

o�k+1

1

Optimized estimates can be used to produce fused object models

156

Distributed Object-based SLAM
with Joint Object Modeling and Mapping

Trade-off

156

Distributed Object-based SLAM
with Joint Object Modeling and Mapping

Trade-off

Memory Requirements No need to store object models for each
object instance

156

Distributed Object-based SLAM
with Joint Object Modeling and Mapping

Trade-off

Communication Bandwidth

Memory Requirements

Increases because object models are
communicated as well instead of

communicating object labels

No need to store object models for each
object instance

156

Distributed Object-based SLAM
with Joint Object Modeling and Mapping

Trade-off

Communication Bandwidth

Memory Requirements

Generalizability

Increases because object models are
communicated as well instead of

communicating object labels

No need to store object models for each
object instance

Generalizes to unknown object instances

Experiments (Large-Scale Robot dataset)

Object detector is fine-tuned on BigBird dataset

Distributed
 Object-SLAM

Distributed
ORB-SLAM2

Klaus (5 robots)

Military Training
Facility (10 robots)

IRIM (11 robots)

157

Experiments (Large-Scale Robot dataset)

Scene

Our approach is nearly as accurate as distributed keyframe
based approach.

158

AT
E

w.
r.t

 O
RB

-S
LA

M
2

(m
)

Experiments (Large-Scale Robot dataset)

Communication Requirements Memory Requirements

C
om

m
un

ic
at

io
n

(in
 M

B)

Scene Scene
M

em
or

y
(in

 M
B)

Our approach has much less memory and communication
requirement than distributed keyframe based approach.

159

Experiments
(Large-Scale handheld dataset)

Pre-trained COCO Object detector is used

Distributed Object-SLAM Distributed ORB-SLAM2

Size of the map: 27 m X 20 m
Number of Poses: 4562

Distance travelled: 84.48 m

160

Experiments
(Large-Scale handheld dataset)

Pre-trained COCO Object detector is used

Distributed Object-SLAM Distributed ORB-SLAM2

Size of the map: 27 m X 20 m
Number of Poses: 4562

Distance travelled: 84.48 m

160

Experiments
(Large-Scale handheld dataset)

Pre-trained COCO Object detector is used

Distributed Object-SLAM Distributed ORB-SLAM2

Size of the map: 11 m X 5 m
Number of Poses: 4042

Distance travelled: 65.53 m

161

Experiments
(Large-Scale handheld dataset)

Pre-trained COCO Object detector is used

Distributed Object-SLAM Distributed ORB-SLAM2

Size of the map: 11 m X 5 m
Number of Poses: 4042

Distance travelled: 65.53 m

161

Experiments
(Large-Scale handheld dataset)

Scene

Our approach is nearly as accurate as distributed keyframe
based approach.

162

AT
E

w.
r.t

 O
RB

-S
LA

M
2

(m
)

Experiments
(Large-Scale handheld dataset)

Communication Requirements Memory Requirements

C
om

m
un

ic
at

io
n

(in
 M

B)

Scene Scene
M

em
or

y
(in

 M
B)

Our approach has much less memory and communication
requirement than distributed keyframe based approach.

163

Outline

1. Distributed Gauss-Seidel Approach
(state of art distributed optimizer)

2. Distributed Object-based SLAM with Known Object Models
(using objects as landmarks)

3. Distributed Object-based SLAM with Joint Object Modeling and Mapping
(jointly model objects along with SLAM)

4. Conclusions and Future Work

164

Outline

1. Distributed Gauss-Seidel Approach
(state of art distributed optimizer)

2. Distributed Object-based SLAM with Known Object Models
(using objects as landmarks)

3. Distributed Object-based SLAM with Joint Object Modeling and Mapping
(jointly model objects along with SLAM)

4. Conclusions and Future Work

164

Contributions

165

Contributions

• An object-based distributed algorithm for cooperative trajectory
estimation

165

Contributions

• An object-based distributed algorithm for cooperative trajectory
estimation

• Reduces the memory requirements and information exchange
among robots.

165

Contributions

• An object-based distributed algorithm for cooperative trajectory
estimation

• Reduces the memory requirements and information exchange
among robots.

• It is as accurate as the centralized estimate.

165

Contributions

• An object-based distributed algorithm for cooperative trajectory
estimation

• Reduces the memory requirements and information exchange
among robots.

• It is as accurate as the centralized estimate.

• It scales well to large number of robots and is resilient to noise.

165

Contributions

• An object-based distributed algorithm for cooperative trajectory
estimation

• Reduces the memory requirements and information exchange
among robots.

• It is as accurate as the centralized estimate.

• It scales well to large number of robots and is resilient to noise.

165

Contributions

• An object-based distributed algorithm for cooperative trajectory
estimation

• Reduces the memory requirements and information exchange
among robots.

• It is as accurate as the centralized estimate.

• It scales well to large number of robots and is resilient to noise.

• Extended the approach to the case where object models are not
previously known and are jointly optimized within our SLAM
framework.

165

Publications
Siddharth Choudhary, Luca Carlone, Carlos Nieto, John Rogers, Zhen Liu, Henrik I. Christensen, Frank Dellaert
Multi Robot Object-based SLAM
ISER 2016

Siddharth Choudhary, Luca Carlone, Carlos Nieto, John Rogers, Henrik I. Christensen, Frank Dellaert
Distributed Trajectory Estimation with Privacy and Communication Constraints:
a Two-Stage Distributed Gauss-Seidel Approach
ICRA 2016

Siddharth Choudhary, Alexander J.B. Trevor, Henrik I. Christensen, Frank Dellaert
SLAM with Object Discovery, Modeling and Mapping
IROS 2014

Siddharth Choudhary, Luca Carlone, Carlos Nieto, John Rogers, Henrik I. Christensen, Frank Dellaert
Distributed Pose Graph Optimization with Privacy and Communication Constraints:
Lightweight Algorithms and Object-based Models
IJRR 2017 (accepted)

https://cognitiverobotics.github.io/distributed-mapper/
166

https://cognitiverobotics.github.io/distributed-mapper/

Publications
Siddharth Choudhary, Luca Carlone, Carlos Nieto, John Rogers, Zhen Liu, Henrik I. Christensen, Frank Dellaert
Multi Robot Object-based SLAM
ISER 2016

Siddharth Choudhary, Luca Carlone, Carlos Nieto, John Rogers, Henrik I. Christensen, Frank Dellaert
Distributed Trajectory Estimation with Privacy and Communication Constraints:
a Two-Stage Distributed Gauss-Seidel Approach
ICRA 2016

Siddharth Choudhary, Luca Carlone, Henrik I. Christensen, Frank Dellaert
Exactly Sparse Memory Efficient SLAM using the
Multi-Block Alternating Direction Method of Multipliers
IROS 2015

Siddharth Choudhary, Vadim Indelman, Henrik I. Christensen, Frank Dellaert
Information based Reduced Landmark SLAM
ICRA 2015

Siddharth Choudhary, Alexander J.B. Trevor, Henrik I. Christensen, Frank Dellaert
SLAM with Object Discovery, Modeling and Mapping
IROS 2014

Siddharth Choudhary, Luca Carlone, Carlos Nieto, John Rogers, Henrik I. Christensen, Frank Dellaert
Distributed Pose Graph Optimization with Privacy and Communication Constraints:
Lightweight Algorithms and Object-based Models
IJRR 2017 (accepted)

https://cognitiverobotics.github.io/distributed-mapper/

Distributed Outlier Rejection
(Future Work)

Investigate distributed implementation of outlier rejection methods*,
so that they can be applied in a multi robot system without requiring all
robots to exchange all measurements.

168

Distributed Outlier Rejection
(Future Work)

Investigate distributed implementation of outlier rejection methods*,
so that they can be applied in a multi robot system without requiring all
robots to exchange all measurements.

168

*Selecting good measurements via l1 relaxation: a convex approach for robust estimation over graphs,
 Carlone et al. (IROS 2014)

Multi Robot Exploration and Mapping
(Future Work)

169

Autonomous exploration and mapping using a heterogeneous team of robots.

Multi Robot Exploration and Mapping
(Future Work)

169

Autonomous exploration and mapping using a heterogeneous team of robots.

• An object-based distributed algorithm for cooperative trajectory
estimation

• Reduces the memory requirements and information exchange
among robots.

• It is as accurate as the centralized estimate.

• It scales well to large number of robots and is resilient to noise.

• Extended the approach to the case where object models are not
previously known and are jointly optimized within our SLAM
framework.

Thank you!

Contributions

• An object-based distributed algorithm for cooperative trajectory
estimation

• Reduces the memory requirements and information exchange
among robots.

• It is as accurate as the centralized estimate.

• It scales well to large number of robots and is resilient to noise.

• Extended the approach to the case where object models are not
previously known and are jointly optimized within our SLAM
framework.

Thank you!

Contributions

