
DISTRIBUTED OBJECT-BASED SLAM

A Thesis
Presented to

The Academic Faculty

by

Siddharth Choudhary

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Interactive Computing

Georgia Institute of Technology
December 2017

Copyright c© 2017 by Siddharth Choudhary

DISTRIBUTED OBJECT-BASED SLAM

Approved by:

Professor Henrik I. Christensen, Advisor

School of Interactive Computing

Georgia Institute of Technology

Professor Frank Dellaert, Co-Advisor

School of Interactive Computing

Georgia Institute of Technology

Professor James M. Rehg

School of Interactive Computing

Georgia Institute of Technology

Professor Patricio Vela

School of Electrical and Computer

Engineering

Georgia Institute of Technology

Professor John Leonard

Department of Mechanical Engineering

Massachusetts Institute of Technology

Date Approved: August 1, 2017

DEDICATION

Dedicated to Mummy and Papa

ACKNOWLEDGEMENTS

This thesis would not be possible without the support and contribution of many people I

collaborated with over the course of my Ph.D. First of all, I would like to thank my advisor,

Prof. Henrik Christensen who always ensured that I look at the big picture while selecting

a problem to solve for my Ph.D. thesis. He taught me how to scientifically break down

difficult problems into solvable subsets and how to solve a problem using a multipronged

approach. Despite his busy schedule he always found time to advise me all these years.

I’m also in debt to my co-advisor, Prof. Frank Dellaert for teaching me the rigor required

at each stage of problem-solving, from writing unit tests during coding to properly writing

mathematical equations while writing research papers. I’m also thankful to Prof. Luca

Carlone, who I collaborated with on multiple papers during my thesis. Luca taught me

the organizational skills required to take an idea and convert it into a successful research

project. His detailed feedback on research papers to coding style has been very valuable

through out my Ph.D. I’m grateful to my first advisor Prof. P J Narayanan who instilled

the excitement of research in me during my undergraduate days and with whom I had the

first research experience. I’m also thankful to my other collaborators which include Vadim

Indelman, Alexander J.B. Trevor, Carlos Nieto, John Rogers, Varun Murali and Zhen Liu

who all have taught me so much.

I will also miss my lab mates in CogRob and BORG lab working on a paper or a demo

deadline with them. I wish to acknowledge my colleagues at IRIM and CPL, Rahul, Natesh,

Tapo, Abhijit, Nam, Pushkar, Himanshu, Shray, Samarth, Ruffin, Priyam, Varun, Niharika,

Carlos and many others, who made my time here enjoyable. I’ll miss the people at Asha

For Education running group.

I am also grateful for the support of Army Research Lab MAST program which has

iv

funded this research. I’m thankful for the resources provided by the ARL including robots

and state of art facilities for my research. I’ll miss the time spent during my last year

working with the fantastic researchers at ARL.

In the end, I wish to thank my parents who have always supported my dreams and my

decision to do a Ph.D. They always motivated me during the bad times and cheered me

during the good times. Thank you, mummy and papa, for believing in me. I couldn’t have

asked for more. I am thankful to bhaiya and bhabhi who sacrificed a lot, kept everyone

together during times of crisis and are a true inspiration for me. I wish to thank my wife

Akanksha, who left everything familiar back in India and moved to U.S. to live with me.

She had to spend most of the last year in the lab with me while I focused on finishing up

the thesis. I couldn’t have done my thesis in time without her help and I will always be in

debt to her.

v

TABLE OF CONTENTS

DEDICATION . iv

ACKNOWLEDGEMENTS . v

LIST OF TABLES . x

LIST OF FIGURES . xiii

SUMMARY . xx

I INTRODUCTION . 1

II RELATED WORK . 5

2.1 Distributed Estimation . 5

2.2 RGB-D Mapping . 8

2.3 Object-level Mapping . 10

2.4 Dense Semantic Mapping . 11

III DISTRIBUTED POSE GRAPH OPTIMIZATION WITH PRIVACY AND
COMMUNICATION CONSTRAINTS . 14

3.1 Introduction . 14

3.2 Problem Formulation: Distributed Pose Graph Optimization 15

3.3 Two-Stage Pose Graph Optimization: Centralized Description 18

3.4 Distributed Pose Graph Optimization . 21

3.4.1 Distributed Jacobi Over-Relaxation (JOR): 22

3.4.2 Distributed Successive Over-Relaxation (SOR) 24

3.4.3 Communication Requirements for JOR and SOR 25

3.4.4 Flagged Initialization . 26

3.5 Implementation Details: Distributed Pose Graph Optimization 27

3.6 Experiments . 29

3.6.1 Simulation Results: Distributed Pose Graph Optimization 29

3.6.2 Field Experiments: Distributed Pose Graph Optimization 40

3.7 Conclusions . 57

vi

IV DISTRIBUTED OBJECT BASED SLAM WITH KNOWN OBJECT MOD-
ELS . 58

4.1 Introduction . 58

4.2 Problem Formulation: Distributed Object-based SLAM 60

4.3 Implementation Details: Distributed Object based SLAM 63

4.4 Experiments . 66

4.4.1 Simulation Results: Distributed Object based SLAM 66

4.4.2 Field Experiments: Distributed Object based SLAM 69

4.5 Main Experimental Insights . 73

4.6 Conclusions . 74

V OBJECT BASED SLAM WITH JOINT OBJECT MODELING AND MAP-
PING . 75

5.1 Introduction . 75

5.2 Problem Formulation: Object-SLAM with Joint Object Modeling and
Mapping . 79

5.3 Implementation Details: Object based SLAM with Joint Object Modeling
and Mapping . 81

5.4 Experiments . 85

5.4.1 UW RGB-D Scenes v2 dataset 86

5.4.2 TUM RGB-D dataset . 92

5.4.3 Handheld Experiments . 93

5.4.4 Robot Experiments . 98

5.5 Conclusions . 104

VI DISTRIBUTED OBJECT BASED SLAM WITH JOINT OBJECT MODEL-
ING AND MAPPING . 105

6.1 Introduction . 105

6.2 Problem Formulation: Distributed Object-based SLAM with Joint Object
Modeling And Mapping . 106

6.3 Implementation Details: Distributed Object based SLAM with Joint Ob-
ject Modeling and Mapping . 108

6.4 Experiments . 110

vii

6.4.1 Experimental Setup . 110

6.4.2 Results . 113

6.5 Conclusions . 123

VII CONCLUSIONS AND FUTURE WORK 124

REFERENCES . 127

viii

LIST OF TABLES

1 Number of iterations and cost attained in problem (3) by the DGS algo-
rithm (for two choices of the stopping conditions), versus a centralized
two-stage approach and a GN method. Results are shown for scenarios
with increasing number of robots. Measurement noise is generated from a
Gaussian distribution with standard deviation σR = 5◦ for the rotations and
σt = 0.2m for the translations. Results are averaged over 10 Monte Carlo
runs. 38

2 Number of iterations and cost attained in problem (3) by the DGS algorithm
(for two choices of the stopping conditions), versus a centralized two-stage
approach and a GN method. Results are shown for increasing measurement
noise in a scenario with 49 robots . 39

3 Performance of DGS on field data as compared to the centralized GN
method and DDF-SAM. Number of iterations, ATE* and ARE* with re-
spect to centralized Gauss-Newton estimate are also shown. 50

4 Number of iterations, cost, ATE* and ARE* of our approach compared
to the centralized Gauss-Newton method for increasing number of robots.
ATE* and ARE* are measured using η=10−1 as stopping condition. Mea-
surement noise is generated from a Gaussian distribution with standard
deviation σR = 5◦ for the rotations and σt = 0.2m for the translations.
Results are averaged over 10 Monte Carlo runs. 68

5 Number of iterations, cost, ATE* and ARE* of our approach compared to
a centralized Gauss-Newton method for increasing measurement noise in
25 Chairs scenario with 6 robots. ATE* and ARE* are measured using
η=10−1 as stopping condition. 69

6 Memory and communication requirements for our object based approach
(Obj) as compared to Point cloud based approach (PCD) on field data. . . . 71

7 Number of iterations, cost, ATE* and ARE* of our approach as compared
to centralized Gauss-Newton method for Field data. 73

8 ATE (in meters) comparison of Object-SLAM with joint object modeling
and mapping (our approach), ORB-SLAM2, ElasticFusion and Kintinuous
on UW RGB-D Scenes v2 dataset. 86

ix

9 RPE comparison of Object-SLAM with joint object modeling and mapping
(our approach), ORB-SLAM2, ElasticFusion and Kintinuous on UW RGB-
D Scenes v2 dataset. 87

10 Memory footprint comparison of Object-SLAM with joint object modeling
and mapping (our approach) and ORB-SLAM2 on UW RGB-D Scenes v2
dataset. 88

11 ATE (in meters) comparison of Object-SLAM with joint object modeling
and mapping (our approach), ORB-SLAM2, ElasticFusion and Kintinuous
on TUM RGB-D dataset. 92

12 RPE comparison of Object-SLAM with joint object modeling and map-
ping (our approach), ORB-SLAM2, ElasticFusion and Kintinuous on TUM
RGB-D dataset. 92

13 Memory footprint comparison of Object-SLAM with joint object modeling
and mapping (our approach) and ORB-SLAM2 on TUM RGB-D dataset. . 93

14 ATE (in meters) and RPE comparison of Object-SLAM with joint ob-
ject modeling and mapping (our approach), Kintinuous and ORB-SLAM2
without loop closures w.r.t ORB-SLAM2 with loop closures. We compare
against ORB-SLAM2 output since we don’t have groundtruth trajectory
estimates. 94

15 Memory requirement comparison of Object-SLAM with joint object mod-
eling and mapping (our approach) and ORB-SLAM2 for Handheld datasets
collected using Orbbec Astra RGBD sensor in IRIM lab and CPL lab. . . . 94

16 ATE-O (in meters) and RPE-O comparison of Object-SLAM with joint ob-
ject modeling and mapping (our approach) w.r.t ORB-SLAM2. We com-
pare against ORB-SLAM2 output since we don’t have groundtruth trajec-
tory estimates. 98

17 Memory requirement comparison of Object-SLAM with joint object mod-
eling and mapping (our approach) and ORB-SLAM2 for Robot datasets
collected with Jackal robot in IRIM lab, CPL lab, Klaus building and a
military training facility. 99

x

18 Per-robot memory and communication requirement comparison of Dis-
tributed Object-SLAM with joint object modeling and mapping (our ap-
proach) and Distributed ORB-SLAM2 for dataset collected in IRIM lab
given in Figure 57. 111

19 Per-robot memory and communication requirement comparison of Dis-
tributed Object-SLAM with joint object modeling and mapping (our ap-
proach) and Distributed ORB-SLAM2 for dataset collected in Klaus build-
ing given in Figure 62. 112

20 Per-robot memory and communication requirement comparison of Dis-
tributed Object-SLAM with joint object modeling and mapping (our ap-
proach) and Distributed ORB-SLAM2 for dataset collected in a military
training facility given in Figure 67 . 112

xi

LIST OF FIGURES

1 An instance of multi robot trajectory estimation: two robots (α in blue,
and β in dark green) traverse an unknown environment, collecting intra-
robot measurements (solid black lines). During rendezvous, each robot can
observe the pose of the other robot (dotted red lines). These are called
inter-robot measurements and relate two separators (e.g., xαi ,xβj). The
goal of the two robots is to compute the ML estimate of their trajectories. . 15

2 Example: (left) trajectory estimation problem and (right) corresponding
block structure of the matrixH . 25

3 Overview of Ego-Motion estimation front-end 28

4 Overview of Distributed Pose Graph Communication 29

5 Simulated 3D datasets with different number of robots. Robots are shown
in different colors. Gray links denote inter-robot measurements. 30

6 JOR: convergence of (a) rotation estimation and (b) pose estimation for dif-
ferent values of γ (grid scenario, 49 robots). In the case of pose estimation,
the gap between the initial values of γ > 1 and γ ≤ 1 is due to the bad
initialization provided by the rotation estimation for γ > 1. 31

7 SOR: convergence of (a) rotation estimation and (b) pose estimation for
different values of γ (grid scenario, 49 robots). 32

8 JORvs SOR: convergence of (a) rotation estimation and (b) pose estima-
tion for the JOR and SOR algorithms with γ = 1 (grid scenario, 49 robots). 32

9 JORvs SOR: number of iterations required for (a) rotation estimation and
(b) pose estimation for the JOR and SOR algorithms with γ = 1 (grid
scenario, 49 robots). The average number of iterations is shown as a solid
line, while the 1-sigma standard deviation is shown as a shaded area. . . . 33

10 SOR: number of iterations required for (a) rotation estimation and (b) pose
estimation in the SOR algorithm for different choices of γ and increasing
number of robots. 34

11 SOR: number of iterations required for (a) rotation estimation and (b) pose
estimation in the SOR algorithm for different choices of γ and increasing
measurement noise. 34

12 DGS: Comparison between flagged and non-flagged initialization on the
grid scenario with 49 robots. Average estimation errors (solid line) and
1-sigma standard deviation (shaded area) are in log scale. 35

13 DGS: convergence statistics of rotation estimation and pose estimation for
each robot (49 Robots). Robots are represented by different color lines. . . 36

xii

14 DGS: Trajectory estimates for the scenario with 49 robots. (a) Odometric
estimate (not used in our approach and only given for visualization pur-
poses), (b)-(c) DGS estimates after given number of iterations. 36

15 DGS: convergence for scenarios with increasing number of robots. 37

16 DGS: convergence for increasing levels of noise (scenario with 49 Robots).
(a) Average rotation error for σR = {1, 5, 10, 15, 20}◦. (b) Average pose
error for σt = {0.1, 0.3, 0.5, 0.8, 1.0}m. 39

17 DGSvs DDF-SAM: (a) average number of iterations versus number of
separators for the DGS algorithm. (b) communication burden (bytes of
exchanged information) for DGS and DDF-SAM, for increasing number
of separators. 40

18 Gazebo tests: ground truth environments and aggregated point clouds cor-
responding to the DGS estimate. 41

19 (a) Number of exploration steps required to explore a fixed-sized grid with
increasing number of robots. (b) Samples of robot trajectories from our
Gazebo-based Monte Carlo experiments. 42

20 Convergence for increasing levels of noise (scenario with 2 Robots in Gazebo).
(a) Average rotation estimation error for σR = {1, 5, 10, 15, 20}◦. (b) Av-
erage pose estimation error for σt = {0.1, 0.3, 0.5, 0.8, 1.0}m. 43

21 Convergence for increasing levels of noise (scenario with 4 Robots in Gazebo).
(a) Average rotation estimation error for σR = {1, 5, 10, 15, 20}◦. (b) Av-
erage pose estimation error for σt = {0.1, 0.3, 0.5, 0.8, 1.0}m. 44

22 Clearpath Jackal robot used for the field tests: platform and sensor layout; . 45

23 Clearpath Jackal robot moving on gravel. 46

24 Histogram visualization comparing the cost attained by DGS algorithm on
field data as compared to the centralized Two-Stage, GN and DDF-SAM
method. It shows that all the proposed approaches are close to GN, while
DDF-SAM has worse performance. The length of y-axis (cost) is limited
to 20 for visualization purposes. Additional quantitative results are given
in Table 3. 46

25 Indoor scenarios: (Left) aggregated point cloud obtained from the DGS
trajectory estimate. (Center) estimated trajectories for DGS, GN and DDF-
SAM (robots shown in red, blue, green and black for the distributed tech-
niques). (Right) overall occupancy grid map obtained from the DGS tra-
jectory estimate. 47

xiii

26 Mixed indoor-outdoor scenarios: (Left) aggregated point cloud obtained
from the DGS trajectory estimate. (Center) estimated trajectories for DGS,
GN and DDF-SAM (robots shown in red, blue, green and black for the
distributed techniques). (Right) overall occupancy grid map obtained from
the DGS trajectory estimate. 48

27 Early tests with 2 robots: (Left) aggregated point cloud obtained from the
DGS trajectory estimate. (Center) estimated trajectories for DGS and GN.
(Right) overall occupancy grid map obtained from the DGS trajectory esti-
mate. 49

28 Test with 10 robots in a military training facility. (Top) Shows the aggre-
gated point cloud and trajectories estimated by DGS method. (Bottom)
Shows the aggregated point cloud and trajectories estimated by the cen-
tralized GN method. Trajectories and point clouds for different robots are
shown using different colors. 51

29 Per-Robot ATE* comparison w.r.t Centralized for data collected in military
training facility given in Fig. 28. 52

30 Test with 11 robots in the IRIM lab. (Top) Shows the aggregated point
cloud and trajectories estimated by DGS method. (Bottom) Shows the
aggregated point cloud and trajectories estimated by the centralized GN
method. Trajectories and point clouds for different robots are shown using
different colors. 53

31 Per-Robot ATE* comparison w.r.t Centralized for data collected in IRIM
lab given in Fig. 30. 54

32 Test with 5 robots in the Klaus building. (Top) Shows the aggregated point
cloud and trajectories estimated by DGS method. (Bottom) Shows the
aggregated point cloud and trajectories estimated by the centralized GN
method. Trajectories and point clouds for different robots are shown using
different colors. The misalignments at the bottom left is due to the lack of
inter-robot loop closures in that region. 55

33 Per-Robot ATE* comparison w.r.t Centralized for data collected in Klaus
lab given in Fig. 32. 56

34 Factor graph representation of Multi-Robot Object based SLAM. xαi and
xβi denote the poses assumed by robot α and β at time i respectively. The
pose of the kth object as estimated by robot α and β is denoted with oαk and
oβk respectively. Green dots shows inter-robot factors whereas orange and
purple dots shows intra-robot factors. 60

35 Flowchart of Object based SLAM . 63

36 Multi robot object-based SLAM in Gazebo: the 25 Chairs and House
scenarios simulated in Gazebo. 67

xiv

37 Shows the trajectories of the six robots and object locations (shows as
dots) estimated using centralized mapping and multi-robot mapping for 25
Chairs (top) and House scenario (bottom). 68

38 Objects from BigBird dataset used in Field Experiments 69

39 (Left) Clearpath Jackal robot used for the field tests: platform and sensor
layout; (right) snapshot of the test facility and the Jackal robots. 70

40 Shows YOLO object detection snapshots in three difference scenes, (l to r)
stadium, house, UW scene 2. 70

41 Field tests: estimated trajectories for the our algorithm (distributed Gauss-
Seidel) and for the centralized Gauss-Newton method [35]. Trajectories of
the two robots are shown in red and blue. 72

42 Lab test: estimated trajectory for our algorithm (distributed Gauss-Seidel)
and approximate trajectory marked on the blue-print. Trajectories of the
two robots are shown in red and green. Object landmarks are shown in blue. 72

43 Snapshot of the process at one instant. The robot trajectory is shown in red.
Green lines add constraints between the modeled object landmarks and the
robot poses they are seen from. Light background shows the aggregated
map cloud generated using the current SLAM solution. 77

44 Factor graph representation of Object based SLAM with Joing Object Mod-
eling and Mapping. xi−1,xi,xi+1 denotes the trajectory poses assumed by
a robot at time i− 1,i,i+ 1 respectively. The pose of the kth object as esti-
mated by the robot is denoted with ok. Green dots shows object-object loop
closure factor whereas orange and purple dots show object-pose factors and
odometry factors respectively. 79

45 Flowchart of Object based SLAM with Joint Object Modeling and Mapping 82

46 Qualitative comparison of the performance of Object-SLAM with joint ob-
ject modeling and mapping (our approach), ORB-SLAM2 and ElasticFu-
sion on UW RGB-D Scenes Dataset v2, scenes 1-5. For Object-SLAM and
ORB-SLAM2 the trajectory is shown in blue color. For object SLAM, ob-
ject bounding boxes are shown in green and category labels shown in red.
Transparent point cloud background is just shown for visualization and is
not used in the actual algorithm. 89

47 Qualitative comparison of the performance of Object-SLAM with joint ob-
ject modeling and mapping (our approach), ORB-SLAM2 and ElasticFu-
sion on UW RGB-D Scenes Dataset v2, scenes 6-12. For Object-SLAM
and ORB-SLAM2 the trajectory is shown in blue color. For object SLAM,
object bounding boxes are shown in green and category labels shown in
red. Transparent point cloud background is just shown for visualization
and is not used in the actual algorithm. 90

xv

48 Qualitative comparison of the performance of Object-SLAM with joint ob-
ject modeling and mapping (our approach), ORB-SLAM2 and ElasticFu-
sion on UW RGB-D Scenes Dataset v2, scenes 11-14. For Object-SLAM
and ORB-SLAM2 the trajectory is shown in blue color. For object SLAM,
object bounding boxes are shown in green and category labels shown in
red. Transparent point cloud background is just shown for visualization
and is not used in the actual algorithm. 91

49 Qualitative comparison of the performance of Object-SLAM with joint ob-
ject modeling and mapping (object-object loop closure, our approach) and
ORB-SLAM2 (keyframe based loop-closure) method on handheld IRIM
dataset. (Top) Shows the modeled objects and trajectory estimated by our
approach. Zoom in along the trajectory in the electronic version to see
the objects. (Bottom) Shows the aggregated point cloud and trajectory esti-
mated by ORB-SLAM2 method. For object SLAM, object bounding boxes
are shown in green and category labels shown in red. 96

50 Qualitative comparison of the performance of Object-SLAM with joint ob-
ject modeling and mapping (object-object loop closure, our approach) and
ORB-SLAM2 (keyframe based loop-closure) method on handheld CPL
dataset. (Top) Shows the modeled objects and trajectory estimated by
our approach. Zoom in along the trajectory in the electronic version to
see the objects. (Bottom) Shows the trajectory estimated by ORB-SLAM2
method. For object SLAM, object bounding boxes are shown in green and
category labels shown in red. 97

51 Qualitative comparison of the performance of Object-SLAM with joint
object modeling and mapping (object-object loop closure, our approach)
and ORB-SLAM2 (keyframe based loop-closure) method on IRIM dataset.
(Top) Shows the aggregated point cloud and trajectory estimated by our ap-
proach. Zoom in along the trajectory in the electronic version to see the ob-
jects. (Bottom) Shows the aggregated point cloud and trajectory estimated
by ORB-SLAM2 method. For object SLAM, object bounding boxes are
shown in green and category labels shown in red. The transparent point
cloud background is just shown for visualization. 100

52 Qualitative comparison of the performance of Object-SLAM with joint
object modeling and mapping (object-object loop closure, our approach)
and ORB-SLAM2 (keyframe based loop-closure) method on CPL dataset.
(Top) Shows the aggregated point cloud and trajectory estimated by our
approach. Zoom in along the trajectory in the electronic version to see
the objects. (Bottom) Shows the aggregated point cloud and trajectory esti-
mated by ORB-SLAM2 method. For object SLAM, object bounding boxes
are shown in green and category labels shown in red. The transparent point
cloud background is just shown for visualization. 101

xvi

53 Qualitative comparison of the performance of Object-SLAM with joint ob-
ject modeling and mapping (object-object loop closure, our approach) and
ORB-SLAM2 (keyframe based loop-closure) method on Klaus dataset.
(Top) Shows the aggregated point cloud and trajectory estimated by our
approach. Zoom in along the trajectory in the electronic version to see
the objects. (Bottom) Shows the aggregated point cloud and trajectory esti-
mated by ORB-SLAM2 method. For object SLAM, object bounding boxes
are shown in green and category labels shown in red. The transparent point
cloud background is just shown for visualization. 102

54 Qualitative comparison of the performance of Object-SLAM with joint ob-
ject modeling and mapping (object-object loop closure, our approach) and
ORB-SLAM2 (keyframe based loop-closure) method on a dataset collected
at a military facility. (Top) Shows the aggregated point cloud and trajectory
estimated by our approach. (Bottom) Shows the aggregated point cloud
and trajectory estimated by ORB-SLAM2 method. For object SLAM, ob-
ject bounding boxes are shown in green and category labels shown in red.
The transparent point cloud background is just shown for visualization. . . 103

55 Factor graph representation of Distributed Object based SLAM with Joint
Modeling and Mapping. xαi and xβi denote the poses assumed by robot
α and β at time i respectively. The pose of the kth object as estimated by
robot α and β is denoted with oαk and oβk respectively. Green dots shows
inter-robot factors whereas orange and purple dots shows intra-robot factors. 106

56 Overview of Distributed Object SLAM Communication 110

57 Test with 11 robots in the IRIM lab. Shows the qualitative comparison
of the performance of distributed object-SLAM with joint object model-
ing and mapping (object-object loop closure, our approach) and distributed
ORB-SLAM2 (keyframe based loop-closure) method. (Top) Shows the ag-
gregated point cloud and trajectories estimated by our approach. Zoom in
along the trajectory in the electronic version to see the objects. (Bottom)
Shows the aggregated point cloud and trajectories estimated by distributed
ORB-SLAM2 method (Chpater 3). For object SLAM, object bounding
boxes are shown in green and category labels shown in red. Transparent
point cloud background is just shown for the visualization of final esti-
mates. 115

58 Per-Robot ATE-O comparison (in meters) with respect to ORB-SLAM2
estimate for data collected in IRIM lab given in Fig. 57. 116

59 Per-Robot RPE-O comparison with respect to ORB-SLAM2 estimate for
data collected in IRIM lab given in Fig. 57. 116

60 Per-Robot ATE* comparison (in meters) with respect to Centralized esti-
mate for data collected in IRIM lab given in Fig. 57. 117

xvii

61 Per-Robot RPE* comparison with respect to Centralized estimate for data
collected in IRIM lab given in Fig. 57. 117

62 Test with 5 robots in Klaus building. Shows the qualitative comparison
of the performance of distributed object-SLAM with joint object model-
ing and mapping (object-object loop closure, our approach) and distributed
ORB-SLAM2 (keyframe based loop-closure) method. (Top) Shows the
aggregated point cloud and trajectories estimated by our approach. Zoom
in along the trajectory in the electronic version to see the objects. (Bot-
tom) Shows the aggregated point cloud and trajectories estimated by ORB-
SLAM2 method (Chpater 3). For object SLAM, object bounding boxes are
shown in green and category labels shown in red. Transparent point cloud
background is just shown for visualization. 118

63 Per-Robot ATE-O comparison (in meters) w.r.t ORB-SLAM2 estimate for
data collected in Klaus building given in Fig. 62. 119

64 Per-Robot RPE-O comparison w.r.t ORB-SLAM2 estimate for data col-
lected in Klaus building given in Fig. 62. 119

65 Per-Robot ATE* comparison (in meters) with respect to Centralized esti-
mate for data collected in Klaus building given in Fig. 62. 120

66 Per-Robot RPE* comparison with respect to Centralized estimate for data
collected in Klaus building given in Fig. 62. 120

67 Test with 10 robots in a military training facility. Shows the qualitative
comparison of the performance of distributed object-SLAM with joint ob-
ject modeling and mapping (object-object loop closure, our approach) and
distributed ORB-SLAM2 (keyframe based loop-closure) method. (Top)
Shows the aggregated point cloud and trajectories estimated by our ap-
proach. (Bottom) Shows the aggregated point cloud and trajectories es-
timated by ORB-SLAM2 method (Chpater 3). For object SLAM, object
bounding boxes are shown in green and category labels shown in red.
Transparent point cloud background is just shown for visualization. 121

68 Per-Robot ATE-O comparison (in meters) with respect to ORB-SLAM2
estimate for data collected in a military training facility given in Fig. 67. . 122

69 Per-Robot RPE-O comparison with respect to ORB-SLAM2 estimate for
data collected in a military training facility lab given in Fig. 67. 122

xviii

SUMMARY

The use of multiple cooperative robots or mobile devices has the potential to enable

fast information gathering, and more efficient coverage and monitoring of large areas. In

particular, distributed SLAM, i.e., the cooperative construction of a model of the environ-

ment explored by the robots or mobile devices, is fundamental to geotag sensor data (e.g.,

for pollution monitoring, surveillance and search and rescue), and to gather situational

awareness. For military applications, multi-robot systems promise more efficient operation

and improved robustness to adversarial attacks. In civil applications (e.g., pollution mon-

itoring, surveillance, search and rescue), the use of several inexpensive, heterogeneous,

agile platforms is an appealing alternative to monolithic single robot systems.

In this thesis, we aim at designing a technique that allows each robot or mobile device

to build its own object level map while asking for minimal knowledge of the map of the

teammates. In particular, we make the following three major contributions:

1. We present a distributed algorithm based on Distributed Gauss-Seidel to estimate

the 3D trajectories of multiple cooperative robots from relative pose measurements. This

approach has several advantages. It requires minimal information exchange, which is ben-

eficial in the presence of communication and privacy constraints. It has an anytime flavor:

after few iterations, the trajectory estimates are already accurate, and they asymptotically

convergence to the centralized estimate. The DGS approach scales well to large teams,

is resistant to noise and it has a straightforward implementation. We test the approach in

simulations and field tests, demonstrating its advantages over related techniques.

2. We present an approach for distributed SLAM which uses object landmarks in a dis-

tributed mapping framework. We show that this approach further reduces the information

exchange among robots (as compared to feature based DGS), results in a compact, human

xix

understandable map, and has lower computational complexity as compared to low-level

feature based distributed mapping.

3. Finally, we extend the previous work to the case where object models are previously

unknown and are modeled jointly with Distributed Object-based SLAM. We show that this

approach further reduces the memory required to store the object models while maintaining

the accuracy at the same level as the state of art RGB-D mapping approaches.

As a future work, we are extending this work in different directions. First, our current

approach is based on a nonlinear least squares formulation which is not robust to gross

outliers. As a future work, we will focus on designing more general algorithms that are

robust to spurious measurements. Second, we plan to extend our experimental evaluation

to flying robots. While we demonstrate the effectiveness of our approach in large teams

of ground robots, we believe that the next grand challenge is to enable coordination and

distributed mapping in swarms of agile micro aerial vehicles with limited communication

and computation resources.

xx

CHAPTER I

INTRODUCTION

The deployment of distributed systems in the real world poses many technical challenges,

ranging from coordination and formation control, to task allocation and distributed sensor

fusion. In this work we tackle a specific instance of the sensor fusion problem. We consider

the case in which a team of robots or mobile devices explores an unknown environment

and each robot or mobile device has to estimate its trajectory from its own sensor data and

leveraging information exchange with the teammates. Trajectory estimation is relevant as

it constitutes the backbone for many estimation and control tasks (e.g., geo-tagging sensor

data, 3D map reconstruction, position-aware task allocation). Indeed, in our application,

trajectory estimation enables distributed 3D reconstruction and localization.

We consider a realistic scenario, in which the robots or mobile devices can only com-

municate when they are within a given distance. Moreover, also during a rendezvous (i.e.,

when the robots or mobile devices are close enough to communicate) they cannot exchange

a large amount of information, due to bandwidth constraints (e.g., there exist an upper

bound on the number of bytes that the robots or mobile devices can exchange).

Moreover, we aim at a technique that allows each robot or mobile device to estimate

its own trajectory, while asking for minimal knowledge of the trajectory of the teammates.

This “privacy constraint” has a clear motivation in a military application: in case one robot

is captured, it cannot provide sensitive information about the areas covered by the other

robots in the team. Similarly, in civilian applications, one may want to improve the lo-

calization of a device (e.g., a smart phone) by exchanging information with other devices,

while respecting users’ privacy.

1

Dealing with bandwidth constraints is challenging for two reasons. First, most ap-

proaches for distributed SLAM imply a communication burden that grows quadratically in

the number of locations co-observed by the robots [29]; these approaches are doomed to

quickly hit the bandwidth constraints. In chapter 3, we alleviated this issue by proposing

an approach, based on the distributed Gauss-Seidel method [23], which requires linear

communication.

The second issue regards the communication cost of establishing loop closures among

robots. When the robots or mobile devices are not able to directly detect each other, loop

closures have to be found by comparing raw sensor data; in our setup the robots or mobile

devices are equipped with an RGBD camera and exchanging multiple 3D point clouds

quickly becomes impractical in presence of communication bounds. We address the second

issue in chapter 4 by using an object-level map representation.

Finally, the approach introduced in chapter 4 assumes that the object model of each

instance that each mapped in an environment is known in advance. However it can be

challenging to store a model of all the object instances due to large intra-class variation.

Searching through all the object models for object pose estimation can be computationally

demanding. It won’t generalize to new unseen instances of the same object category as

well.

Therefore, in chapter 5, we proposed an approach to SLAM with joint object modeling

and mapping. This approach requires less memory as compared to the state of art RGB-D

mapping approaches while maintaining the accuracy level of the state of art RGB-D map-

ping approaches. In chapter 6, we integrate the joint object modeling and mapping frame-

work with distributed object based SLAM approach and show that this approach extends

the previous work [23, 24, 25] to the case where object models are previously unknown. We

shows that this approach further reduces the memory required to store the object models.

In chapter 7 we conclude the thesis and discuss the future work.

2

The overall thesis statement is as follows:

Thesis Statement. Using objects as landmarks in a distributed SLAM framework opti-

mized using the state of art distributed optimizer both reduces the communication band-

width and the memory used by each robot, outputs a human understandable map and im-

proves the robustness and scalability of distributed SLAM.

Contributions. We support the above thesis statement using the following contributions:

• Distributed Gauss-Seidel Algorithm [23]. We present a distributed algorithm to

estimate the 3D trajectories of multiple cooperative robots or mobile devices from

relative pose measurements. Our approach leverages recent results [20] which show

that the maximum likelihood trajectory is well approximated by a sequence of two

quadratic subproblems. The main contribution of this work is to show that these sub-

problems can be solved in a distributed manner, using the distributed Gauss-Seidel

(DGS) algorithm. This approach has several advantages. It requires minimal in-

formation exchange, which is beneficial in presence of communication and privacy

constraints. It has an anytime flavor: after few iterations the trajectory estimates

are already accurate, and they asymptotically convergence to the centralized esti-

mate. The DGS approach scales well to large teams, is resistant to noise and it has a

straightforward implementation. We test the approach in simulations and field tests,

demonstrating its advantages over related techniques.

• Distributed Object based SLAM with Known Object Models [24]. Traditional

approach for distributed mapping typically make use of feature-based maps which

are composed of low level primitives like points and lines which model space based

on its geometric shape [32]. These maps become memory intensive for long-term op-

eration, contain a lot of redundant information (useless to represent a planar surface

with thousands of points), lack the semantic information necessary for performing

3

wider range of tasks (eg. manipulation tasks).

To solve these issues, we present an approach for Distributed SLAM which uses ob-

ject landmarks [108] in a distributed mapping framework [23, 25]. We show that this

approach further reduces the information exchange among robots or mobile devices

(as compared to feature based DGS), results in compact, human understandable map,

and has lower computational complexity as compared to low level feature based dis-

tributed mapping. As compared to other object based SLAM approaches [108, 95],

we show results in a larger scale environment using a large number of object cate-

gories applied to multi robot setting.

• Distributed Object based SLAM with Joint Object Modeling and Mapping [25].

The previous approach assumes that the object model of each instance that each

mapped in an environment is known in advance. However it can be challenging to

store a model of all the object instances due to large intra-class variation. Searching

through all the object models for object pose estimation can be computationally de-

manding. It won’t generalize to new unseen instances of the same object category

as well. Therefore, we extend the previous work [23, 24, 25] to the case where ob-

ject models are previously unknown and are modeled jointly with Distributed Object

based SLAM. We use the off-the-shelf lightweight convolutional network based ob-

ject detectors to detect object at categorical level which are then modeled at instance

level by integrating detection across frames. The modeled object instance are then

data associated against other instances seen by the same robot or other robots to gen-

erate object-object constraint. We show that this approach generalizes distributed

object-based SLAM to unseen object models while further reducing the memory re-

quired to store the object models.

4

CHAPTER II

RELATED WORK

2.1 Distributed Estimation

Distributed estimation in multi robot systems is currently an active field of research, with

special attention being paid to communication constraints [94], heterogeneous teams [9,

59], estimation consistency [8], and robust data association [58, 37]. The robotics literature

offers distributed implementations of different estimation techniques, including Extended

Kalman filters [103, 144], information filters [124], and particle filters [57, 18]. More re-

cently, the community reached a large consensus on the use of maximum likelihood (ML)

estimation (maximum a-posteriori, in presence of priors), which, applied to trajectory esti-

mation, is often referred to as pose graph optimization or pose-based SLAM. ML estimators

circumvent well-known issues of Gaussian filters (e.g., build-up of linearizion errors) and

particle filters (e.g., particle depletion), and frame the estimation problem in terms of non-

linear optimization. In multi robot systems, ML trajectory estimation can be performed by

collecting all measurements at a centralized inference engine, which performs the optimiza-

tion [4, 66, 9]. Variants of these techniques invoke partial exchange of raw or preprocessed

sensor data [76, 58].

In many applications, however, it is not practical to collect all measurements at a single

inference engine. When operating in a hostile environment, a single attack to the cen-

tralized inference engine (e.g., one of the robots) may threaten the operation of the entire

team. Moreover, the centralized approach requires massive communication and large band-

width. Furthermore, solving trajectory estimation over a large team of robots can be too

demanding for a single computational unit. Finally, the centralized approach poses pri-

vacy concerns as it requires to collect all information at a single robot; if an enemy robot

5

is able to deceive the other robots and convince them that it is part of the team, it can

easily gather sensitive information (e.g., trajectory covered and places observed by every

robot). These reasons triggered interest towards distributed trajectory estimation, in which

the robots only exploit local communication, in order to reach a consensus on the trajectory

estimate. Nerurkar et al. [86] propose an algorithm for cooperative localization based on

distributed conjugate gradient. Franceschelli and Gasparri [43] propose a gossip-based al-

gorithm for distributed pose estimation and investigate its convergence in a noiseless setup.

Aragues et al. [5] use a distributed Jacobi approach to estimate a set of 2D poses, or the

centroid of a formation [6]. Araguez et al. [7] investigate consensus-based approaches for

map merging. Knuth and Barooah [68] estimate 3D poses using distributed gradient de-

scent. Cunnigham et al. [30] use Gaussian elimination, and develop an approach, called

DDF-SAM, in which each robot exchange a Gaussian marginal over the separators (i.e.,

the variables observed by multiple robots); the approach is further extended in [29], to

avoid storage of redundant data, thought the use of anti-factors.

The literature on parallel computing and hierarchical approaches is also relevant: the

idea is still based on Schur complement, which has been also expoited as a key component

for hierarchical approaches for large-scale mapping [89, 50, 116]. Decoupled stochastic

mapping was one of the earliest approach for submapping proposed by Leonard and Feder

[78]. Leonard and Newman [79] propose a constant time SLAM solution which achieves

near-optimal result under the assumption that the robot makes repeated visits to all regions

of the environment. Frese et al. [46] proposed multi-level relaxation resulting in a linear

time update. Frese [45] proposed TreeMap algorithm which is similar to Thin junction

tree filter (TJTF). It divides the environment into a parts-whole-hierarchy represented as a

binary tree. Since it uses a balanced tree, update requires only O(k3 log n) time. Estrada

et al. [39] presented an hierarchical SLAM framework which consist of a set of local maps

connected by arcs labelled with relative location between the maps. As compared to pre-

vious approaches it maintains loop consistency when calculating the optimal estimate at

6

global level. Ni et al. [88] presented an exact submapping approach within a smoothing

and mapping framework, and propose to cache the factorization of the submaps to speed-

up computation. Grisetti et al. [50] propose hierarchical updates on the map: whenever

an observation is acquired, the highest level of the hierarchy is modified and only the ar-

eas which are substantially modified are changed at lower levels. Ni and Dellaert [89]

extended their previous approach to multiple levels and used nested dissection to minimize

the dependence between two subtrees. Grisetti et al. [51] proposed a robust optimization

approach using solution of submaps to provide good initial estimate for global alignment.

Condensed measurements computed from partial solutions have large convergence basin.

Zhao et al. [140] present a approximation strategy for large scale SLAM by solving a

sequence of submaps and joining them in a divide and conquer manner using linear least

squares. Suger et al. [116] present an approximate SLAM approach based on hierarchical

decomposition to reduce the memory consumption required to solve the complete graph.

While Gaussian elimination has become a popular approach it has two major shortcom-

ings. First, the marginals to be exchanged among the robots are dense, and the communica-

tion cost is quadratic in the number of separators. This motivated the use of sparsification

techniques to reduce the communication cost [94]. The second reason is that Gaussian

elimination is performed on a linearized version of the problem, hence these approaches

require good linearization points and complex bookkeeping to ensure consistency of the

linearization points across the robots [29]. The need of a linearization point also character-

izes gradient-based techniques [68].

Related Work in Other Communities. Distributed position and orientation estimation

is a fertile research area in other communities, including sensor networks, computer vision,

and multi agent systems. In these works, the goal is to estimate the state (e.g. position or

orientation) of an agent (e.g., a sensor or a camera) from relative measurements among the

agents. A large body of literature deals with distributed localization from distance mea-

surements, see [3, 16, 111, 135] and the references therein. The case of position estimation

7

from linear measurements is considered in [12, 13, 105, 21, 126, 44]; the related problem of

centroid estimation is tackled in [6]. Distributed rotation estimation has been studied in the

context of attitude synchronization [125, 52, 93], camera network calibration [132, 130],

sensor network localization [96], and distributed consensus on manifolds [109, 131].

2.2 RGB-D Mapping

One of the earliest systems that performed real-time 3D model reconstruction using struc-

tured light sensor was proposed by Rusinkiewicz et al. [104]. In their system, user rotates

the object by hand and sees a continuously updated model as the object is scanned. Their

system used a real-time variant of ICP algorithm based of point-plane metric and projective

data association to perform live reconstruction of small models. Subsequently, Weise et al.

[136] improved on their system and performed high quality object reconstruction using fix

time of flight (ToF) sensor and moving object. Cui et al. [28] showed reconstruction results

using a moving ToF sensor.

Henry et al. [53] introduced an RGB-D mapping framework to generate dense 3D

models of large indoor environments. Live sensor motion between consecutive frames was

estimated using ICP between depth scans which was initialized by RGB feature match-

ing. Pose graph optimization over the frames was used to generate globally consistent

maps. Hornung et al.[56] proposed an octree based occupancy mapping framework which

uses octree compression techniques to scale to large areas. Newcombe et al. [87] pro-

posed KinectFusion system which used the reconstructed implicit surface model to track

the current live frame instead of estimating the current pose using frame-to-frame ICP.

The model is then updated by fusing the current depth information with the reconstructed

model. However, the KinectFusion system cannot perform loop closure since it does not

maintain a pose graph to check for loop closures and was designed for real time perfor-

mance in small workspaces useful for augmented reality. Another issue with these implicit

volumetric methods is their lack of scalability due to their reliance on uniform grid which

8

is limited by the amount of GPU memory. Whelan et al. [137, 2, 1] addressed the scal-

ability and loop closure issue using a rolling cyclical buffer for moving the voxel grid in

and out of GPU memory and included loop closure using place recognition and pose graph

optimization. Zhou et al. [143] used a GPU-based octree to perform Poisson surface re-

construction on 300K vertices at interactive rates. Niessner et al. [90] proposed a voxel

hashing technique that compresses space and allows for real-time access and updates for

implicit surface data, without the need for regular or hierarchical grid structure.

Other SLAM systems include DVO-SLAM proposed by Kerl et al. [64, 113, 65]. DVO-

SLAM estimates frame-to-frame motion and performs no explicit map reconstruction and

uses pose graph optimization to estimate consistent reconstruction. Meilland and Comport

use fused keyframes of mapped environment to predict current frame’s pose and they also

use pose graph optimization to close large loops. MRSMap by Stuckler and Behnke regis-

ters octree encoded surfel maps together for pose estimation. After pose graph optimisation

the final map is created by merging key surfel views [114]. ORB-SLAM system proposed

by Raul Mur-Artal generates sparse map by associating and triangulating ORB features and

use the reconstructed map for pose estimation. The system works in real time on CPU in a

wide variety of environments [84, 85].

Recent works have focussed on generating dense consistent reconstructions at scale

and in real time. Choi et al. [22] used line processes to robustify the optimization to erro-

neous data association. Whelan et al. [138] build a surfel based map of the environment.

This is a map-centric approach that forget poses and performs loop closing applying a non-

rigid deformation to the map, instead of a standard pose-graph optimization. The detailed

reconstruction and localization accuracy of this system is impressive, but the current imple-

mentation is limited to room-size maps as the complexity scales with the number of surfels

in the map. Dai et al. [31] propose a novel online real-time 3D reconstruction approach

that provides robust tracking and implicitly solves the loop closure problem by globally

optimizing the trajectory for every captured frame.

9

2.3 Object-level Mapping

Semantic mapping using high-level object-based representation has gathered a large amount

of interest from the robotics community. Kuipers et al. [72] model the environment as

a spatial semantic hierarchy, where each level expresses states of partial knowledge cor-

responding to different level of representations. Nieto et al. [91] employed automated

recognition and classification of spaces into separate semantic (Gaussian) regions and used

the spatial information for the generation of a topological map of the environment. Ran-

ganathan and Dellaert [98] present a 3D generative model for representing places using

objects. The object models are learned in a supervised manner. Civera et al. [26] propose a

semantic SLAM algorithm that annotates the low-level 3D point based maps with precom-

puted object models. Rogers et al. [101] recognize door signs and read their text labels

(e.g., room numbers) which are used as landmarks in SLAM. Trevor et al. [127] use planar

surfaces corresponding to walls and tables as landmarks in a mapping system. Bao et al.

[11] model semantic structure from motion as a joint inference problem where they jointly

recognize and estimate the location of high-level semantic scene components such as re-

gions and objects in 3D. SLAM++, proposed by Moreno et al. [108], train domain-specific

object detectors corresponding to repeated objects like tables and chairs. The learned de-

tectors are integrated inside the SLAM framework to recognize and track those objects

resulting in a semantic map. Similarly, Kim et al. [67] use learned object models to recon-

struct dense 3D models from single scan of the indoor scene. Choudhary et al. [25] pro-

posed an approach for online object discovery and object modeling, and extend a SLAM

system to utilize these discovered and modeled objects as landmarks to help localize the

robot in an online manner. Pillai et al. [95] develop a SLAM-aware object recognition

system which result in a considerably stronger recognition performance as compared to

related techniques. Lopez et al. [47] present a real-time monocular object-based SLAM

using a large database of 500 3D objects and show exploiting object rigidity both improve

10

the map and find its real scale. Another body of related work is in the area of dense seman-

tic mapping where the goal is to categorize each voxel or 3D point with a category label.

Tateno et al. [122] proposed a framework for simultaneous reconstruction, segmentation

and recognition, which incrementally segments and recognizes full 3D objects out of a

KinectFusion reconstruction, and yields robust object recognition and 3D pose estimation.

Mu et al. [83] solves the object level data association problem using a novel nonparamet-

ric pose graph that models data association and SLAM in a single framework. They also

developed an algorithm that alternates between inferring data association and performing

SLAM. Sunderhauf et al. [119] proposed an approach to model individual object enti-

ties as point clouds using SLAM and therefore generating an enriched object map of the

environment.

2.4 Dense Semantic Mapping

Dense semantic mapping is also related to our approach. Related work in dense semantic

mapping include [92, 69, 97, 41, 73, 134, 133, 82] and the references therein. Collet et al.

used domain knowledge in the form of metadata and use it as constraints to generate object

candidates [27]. Using RGBD sensor, Koppula et al. [69] used graphical models capturing

various image feature and contextual relationship to semantically label the point cloud with

object classes and used that on a mobile robot for finding objects in a large cluttered room.

Karpathy et al. [62] decompose a scene into candidate segments and ranks them according

to their objectness properties. Valentin et al. [133] used a CRF and a perpixel labelling

from a variant of TextonBoost to reconstruct semantic maps of both indoor and outdoor

scenes. McCormac et al. [82] combine Convolutional Neural Networks and ElasticFusion

[138] to fuse semantic predictions from multiple view points into a consistent surfel map.

Hoiem and Savarese [54] did a survey of additional recent work in the area of 3D scene

understanding and 3D object recognition.

11

Convolutional Neural Networks for Semantic Mapping. Conventional machine learn-

ing algorithms required a lot of engineering and domain expertise to design a feature ex-

tractor which served as an input to the learning subsystem. Deep learning methods are

representation-learning methods which avoid these issues by learning nested hierarchy of

representation with each levels learning a more abstract representation than the level below

it. It allows the computer to build complex concepts out of simpler concepts [14].

Convolutional neural networks (CNNs) [77] are a special kind of multilayer neural net-

work representation suited for processing structured data like images or videos which has

grid like topology. Convolutional layer is used in place of general matrix multiplication in

at least one of the layers. Convolutional layer consists of various filters which are convolved

with feature map of the previous layer. This layer helps in detecting highly correlated lo-

cal patches. CNNs use the same weight of a filter (shared weights) when convolved with

different parts of an image. This ensures translational invariance of an object in an image.

Shared weights can therefore help detect the same pattern in different parts of the image.

CNNs exploit the property that many natural signals are compositional hierarchies, in

which higher-level features are obtained by composing lower level ones. In images, group

of pixels for edges (detected by first convolutional layer), local combination of edges form

motifs, motifs assemble into parts, group of parts from objects and various objects describe

a scene. Multiple convolutional, pooling, activation layers stacked on top of each other in

CNN are well suited to learn such hierarchy of concepts.

Recently CNN has received considerable success in general vision tasks like image

classification [121, 71], object detection [49, 48] and scene recognition [141, 142]. Open-

source packages like Caffe [60] are available to train/test state-of-art networks without

much effort.

In context of semantic SLAM, convolutional neural networks have been used for place

recognition using CovNet features [120, 117, 118] using networks trained on ImageNet

dataset [36] or Places dataset [142]. Per-image place categorization is embedded into

12

Bayesian filter framework to perform semantic mapping [117]. Similarly CNNs are also

used for RGB image localization which learns the mapping from image to pose, given the

SLAM/SfM output as the training data [63]. McCormac et al. [82] combine Convolutional

Neural Networks and ElasticFusion [138] to fuse semantic predictions from multiple view

points into a consistent surfel map.

13

CHAPTER III

DISTRIBUTED POSE GRAPH OPTIMIZATION WITH PRIVACY

AND COMMUNICATION CONSTRAINTS

3.1 Introduction

We consider a distributed ML trajectory estimation problem in which the robots have to

collaboratively estimate their trajectories while minimizing the amount of exchanged in-

formation. We focus on a fully 3D case, as this setup is of great interest in many robotics

applications (e.g., navigation on uneven terrain, UAVs). We also consider a fully distributed

setup, in which the robots can communicate and acquire relative measurements only during

rendezvous events. Our approach can be understood as a distributed implementation of the

chordal initialization discussed in [20]. The chordal initialization [20] consists in approxi-

mating the ML trajectory estimate by solving two quadratic optimization subproblems. In

particular, we investigate distributed implementations of the Jacobi Over-Relaxation and

the Successive Over-Relaxation. These distributed solvers imply a communication burden

that is linear in the number of rendezvous among the robots. Moreover, they do not rely

on the availability of an accurate initial guess as in related work (see Chap 2). In Section

3.4, we discuss conditions under which the distributed algorithms converge to the same

estimate of the chordal initialization [20], which has been extensively shown to be accurate

and resilient to measurement noise.

We perform extensive experimental evaluation including realistic simulations in Gazebo

and field tests in a military facility. This contribution is presented in Section 3.6. The ex-

periments demonstrate that one of the proposed algorithms, namely the Distributed Gauss-

Seidel method, provides accurate trajectory estimates, reduces communication overhead,

scales to large teams, has any-time flavour and is robust to noise.

14

Figure 1: An instance of multi robot trajectory estimation: two robots (α in blue, and β in
dark green) traverse an unknown environment, collecting intra-robot measurements (solid
black lines). During rendezvous, each robot can observe the pose of the other robot (dot-
ted red lines). These are called inter-robot measurements and relate two separators (e.g.,
xαi ,xβj). The goal of the two robots is to compute the ML estimate of their trajectories.

The first contribution of this thesis is to devise distributed algorithms that the robots can

implement to reach consensus on a globally optimal trajectory estimate using minimal com-

munication. Section 3.2 introduces the mathematical notation and formalizes the problem.

Section 3.3 presents a centralized algorithm, while Section 3.4 presents the corresponding

distributed implementations.

3.2 Problem Formulation: Distributed Pose Graph Optimization

We consider a multi robot system and we denote each robot with a Greek letter, such that the

set of robots is Ω = {α, β, γ, . . .}. The goal of each robot is to estimate its own trajectory

using the available measurements, and leveraging occasional communication with other

robots. The trajectory estimation problem and the nature of the available measurements are

made formal in the rest of this section.

We model each trajectory as a finite set of poses (triangles in Fig. 1); the pose assumed

by robot α at time i is denoted with xαi (we use Roman letters to denote time indices). We

are interested in a 3D setup, i.e., xαi ∈ SE(3), where SE(3) is the Special Euclidean group

of 3D rigid transformations; when convenient, we write xαi = (Rαi , tαi), making explicit

that each pose includes a rotationRαi ∈ SO(3), and a position tαi ∈ R3. The trajectory of

robot α is then denoted as xα = [xα1 ,xα2 , . . .].

15

Measurements. We assume that each robot acquires relative pose measurements. In

practice these are obtained by post-processing raw sensor data (e.g., scan matching on 3D

laser scans). We consider two types of measurements: intra-robot and inter-robot mea-

surements. The intra-robot measurements involve the poses of a single robot at different

time instants; common examples of intra-robot measurements are odometry measurements

(which constrain consecutive robot poses, e.g., xαi and xαi+1
in Fig. 1) or loop closures

(which constrain non-consecutive poses, e.g., xαi−1
and xαi+1

in Fig. 1). The inter-robot

measurements are the ones relating the poses of different robots. For instance, during a

rendezvous, robot α (whose local time is i), observes a second robot β (whose local time is

j) and uses on-board sensors to measure the relative pose of the observed robot in its own

reference frame. Therefore, robot α acquires an inter-robot measurement, describing the

relative pose between xαi and xβj (red links in Fig. 1). We use the term separators to refer

to the poses involved in an inter-robot measurement.

While our classification of the measurements (inter vs intra) is based on the robots

involved in the measurement process, all relative measurements can be framed within the

same measurement model. Since all measurements correspond to noisy observation of the

relative pose between a pair of poses, say xαi and xβj , a general measurement model is:

z̄αiβj
.
= (R̄αi

βj
, t̄αiβj), with:

 R̄αi
βj

= (Rαi)
TRβjRε

t̄αiβj = (Rαi)
T(tβj−tαi)+tε

(1)

where the relative pose measurement z̄αiβj includes the relative rotation measurements R̄αi
βj

,

which describes the attitude Rβj with respect to the reference frame of robot α at time i,

“plus” a random rotation Rε (measurement noise), and the relative position measurement

t̄αiβj , which describes the position tβj in the reference frame of robot α at time i, plus random

noise tε. According to our previous definition, intra robot measurements are in the form

z̄αiαk , for some robot α and for two time instants i 6= k; inter-robot measurements, instead,

are in the form z̄αiβj for two robots α 6= β.

In the following, we denote with EαI the set of intra-robot measurements for robot α,

16

while we call EI the set of intra-robot measurements for all robots in the team, i.e., EI =

∪α∈ΩEαI . The set of inter-robot measurements involving robot α is denoted with EαS (S is

the mnemonic for “separator”). The set of all inter-robot measurements is denoted with ES .

The set of all available measurements is then E = EI ∪ ES . Note that each robot only has

access to its own intra and inter-robot measurements EαI and EαS .

ML trajectory estimation. Let us collect all robot trajectories in a single (to-be-

estimated) set of poses x = [xα ,xβ ,xγ , . . .]. The ML estimate for x is defined as the

maximum of the measurement likelihood:

x? = arg max
x

∏
(αi,βj)∈E

L(z̄αiβj | x) (2)

where we took the standard assumption of independent measurements. The expression of

the likelihood function depends on the distribution of the measurements noise, i.e., Rε, tε

in (1). We follow the path of [19] and assume that translation noise is distributed according

to a zero-mean Gaussian with information matrix ω2
t I3, while the rotation noise follows a

Von-Mises distribution with concentration parameter ω2
R.

Under these assumptions, it is possible to demonstrate [19] that the ML estimate x .
=

{(Rαi , tαi),∀α ∈ Ω,∀i}1 can be computed as solution of the following optimization prob-

lem:

min
tαi∈R

3,Rαi∈SO(3)
∀α∈Ω,∀i

∑
(αi,βj)∈E

ω2
t

∥∥∥tβj−tαiRαi t̄
αi
βj

∥∥∥2

+
ω2
R

2

∥∥∥Rβj −RαiR̄
αi
βj

∥∥∥2

F

The peculiarity of (3) is the use of the chordal distance ‖Rβj−RαiR̄
αi
βj
‖F to quantify rotation

errors, while the majority of related works in robotics uses the geodesic distance, see [20]

for details.

A centralized approach to solve the multi robot pose graph optimization problem (3)

works as follows. A robot collects all measurements E . Then, the optimization problem (3)

is solved using iterative optimization on manifold [35], fast approximations [20], or convex

relaxations [102].

1In order to simplify notations, ∀i refers to the list of time indices for each robot.

17

In this thesis we consider the more interesting case in which it is not possible to col-

lect all measurements at a centralized estimator, and the problem has to be solved in a

distributed fashion. More formally, the problem we solve is the following.

Problem 1 (Distributed Trajectory Estimation) Design an algorithm that each robot α

can execute during a rendezvous with a subset of other robots Ωr ⊆ Ω \ {α}, and that

• takes as input: (i) the intra-robot measurements EαI and (ii) the subset of inter-robot

measurements EαS , (iii) partial estimates of the trajectory of robots β ∈ Ωr;

• returns as output: the ML estimate x?α, which is such that x? = [x?α ,x
?
β ,x

?
γ , . . .] is a

minimizer of (3).

While the measurements EαI and EαS are known by robot α, gathering the estimates

from robots β ∈ Ωr requires communication, hence we want our distributed algorithm to

exchange a very small portion of the trajectory estimates.

The next sections present our solution to Problem 1. To help readability, we start with a

centralized description of the approach, which is an adaptation of the chordal initialization

of [20] to the multi robot case. Then we tailor the discussion to the distributed setup in

Section 3.4.

3.3 Two-Stage Pose Graph Optimization: Centralized Description

The present work is based on two key observations. The first one is that the optimization

problem (3) has a quadratic objective; what makes (3) hard is the presence of non-convex

constraints, i.e.,Rαi ∈ SO(3). Therefore, as already proposed in [20] (for the single robot,

centralized case), we use a two-stage approach: we first solve a relaxed version of (3) and

get an estimate for the rotations Rαi of all robots, and then we recover the full poses and

top-off the result with a Gauss-Newton (GN) iteration. The second key observation is that

each of the two stages can be solved in distributed fashion, exploiting existing distributed

linear system solvers. In the rest of this section we review the two-stage approach of [20],

while we discuss the use of distributed solvers in Section 3.4.

18

The two-stage approach of [20] first solves for the unknown rotations, and then recovers

the full poses via a single GN iteration. The two stages are detailed in the following.

Stage 1: rotation initialization via relaxation and projection. The first stage com-

putes a good estimate of the rotations of all robots by solving the following rotation sub-

problem:

min
Rαi∈SO(3)
∀α∈Ω,∀i

∑
(αi,βj)∈E

ω2
R

∥∥∥Rβj−RαiR̄
αi
βj

∥∥∥2

F
(3)

which amounts to estimating the rotations of all robots in the team by considering only the

relative rotation measurements (the second summand in (3)).

While problem (3) is nonconvex (due to the nonconvex constraints Rαi ∈ SO(3)),

many algorithms to approximate its solution are available in literature. Here we use the

approach proposed in [81] and reviewed in [20]. The approach first solves the quadratic

relaxation obtained by dropping the constraintsRαi ∈ SO(3), and then projects the relaxed

solution to SO(3). In formulas, the quadratic relaxation is:

min
Rαi ,∀α∈Ω,∀i

∑
(αi,βj)∈E

ω2
R

∥∥∥Rβj−RαiR̄
αi
βj

∥∥∥2

F
(4)

which simply rewrites (3) without the constraints. Since (4) is quadratic in the unknown

rotationsRαi , ∀α ∈ Ω,∀i, we can rewrite it as:

min
r
‖Arr − br‖2 (5)

where we stacked all the entries of the unknown rotation matrices Rαi ,∀α ∈ Ω, ∀i into

a single vector r, and we built the (known) matrix Ar and (known) vector br accordingly

(the presence of a nonzero vector br follows from setting one of the rotations to be the

reference frame, e.g.,Rα1 = I3).

Since (4) is a linear least-squares problem, its solution can be found by solving the

normal equations:

(AT
rAr)r = AT

r br (6)

19

Let us denote with r̆ the solution of (6). Rewriting r̆ in matrix form, we obtain the matrices

R̆αi , ∀α ∈ Ω,∀i. Since these rotations were obtained from a relaxation of (3), they are

not guaranteed to satisfy the constraintsRαi ∈ SO(3); therefore the approach [81] projects

them to SO(3), and gets the rotation estimate R̂αi = project(R̆αi), ∀α ∈ Ω,∀i. The

projection only requires to perform an SVD of R̆αi and can be performed independently

for each rotation [20].

Stage 2: full pose recovery via single GN iteration. In the previous stage we ob-

tained an estimate for the rotations R̂αi ,∀α ∈ Ω,∀i. In this stage we use this estimate

to reparametrize problem (3). In particular, we rewrite each unknown rotation Rαi as the

known estimate R̂αi “plus” an unknown perturbation; in formulas, we rewrite each rotation

as Rαi = R̂αiExp (θαi), where Exp (·) is the exponential map for SO(3), and θαi ∈ R3

(this is our new parametrization for the rotations). With this parametrization, eq. (3) be-

comes:

min
tαi ,θαi
∀α∈Ω,∀i

∑
(αi,βj)∈E

ω2
t

∥∥∥tβj−tαi−R̂αiExp (θαi) t̄
αi
βj

∥∥∥2

(7)

+
ω2
R

2

∥∥∥R̂βjExp
(
θβj
)
−R̂αiExp (θαi) R̄

αi
βj

∥∥∥2

F

Note that the reparametrization allowed to drop the constraints (we are now trying to esti-

mate vectors in R3), but moved the nonconvexity to the objective (Exp (·) is nonlinear in

its argument). In order to solve (7), we take a quadratic approximation of the cost function.

For this purpose we use the following first-order approximation of the exponential map:

Exp (θαi) ' I3 + S(θαi) (8)

where S(θαi) is a skew symmetric matrix whose entries are defined by the vector θαi .

Substituting (8) into (7) we get the desired quadratic approximation:

min
tαi ,θαi∈R

3

∀α∈Ω,∀i

∑
(αi,βj)∈E

ω2
t

∥∥∥tβj−tαi−R̂αi t̄
αi
βj
−R̂αiS(θαi)t̄

αi
βj

∥∥∥2

(9)

+
ω2
R

2

∥∥∥R̂βj−R̂αiR̄
αi
βj

+ R̂βjS(θβj)−R̂αiS(θαi)R̄
αi
βj

∥∥∥2

F

20

Rearranging the unknown tαi ,θαi of all robots into a single vector p, we rewrite (9) as a

linear least-squares problem:

min
p
‖Ap p− bp‖2 (10)

whose solution can be found by solving the linear system:

(AT
pAp)p = AT

p bp (11)

From the solution of (11) we can build our trajectory estimate: the entries of p directly

define the positions tαi , ∀α ∈ Ω,∀i; moreover, p includes the rotational corrections θαi ,

from which we get our rotation estimate as: Rαi = R̂αiExp (θαi).

Remark 1 (Advantage of Centralized Two-Stage Approach) The approach reviewed in

this section has three advantages. First, as shown in [20], in common problem instances

(i.e., for reasonable levels of measurement noise) it returns a solution that is very close to

the ML estimate. Second, the approach only requires to solve two linear systems (the cost

of projecting the rotations is negligible), hence it is computationally efficient. Finally, the

approach does not require an initial guess, therefore, it is able to converge even when the

initial trajectory estimate is inaccurate (in those instances, iterative optimization tends to

fail [20]) or is unavailable. �

3.4 Distributed Pose Graph Optimization

In this section we show that the two-stage approach described in Section 3.3 can be im-

plemented in a distributed fashion. Since the approach only requires solving two linear

systems, every distributed linear system solver can be used as workhorse to split the compu-

tation among the robots. For instance, one could adapt the Gaussian elimination approach

of [30] to solve the linear systems (6) and (11). In this section we propose alternative ap-

proaches, based on the Distributed Jacobi Over-Relaxation and the Distributed Successive

Over-Relaxation algorithms, and we discuss their advantages.

21

In both (6) and (11) we need to solve a linear system where the unknown vector can

be partitioned into subvectors, such that each subvector contains the variables associated

to a single robot in the team. For instance, we can partition the vector r in (6), as r =

[rα, rβ, . . .], such that rα describes the rotations of robot α. Similarly, we can partition

p = [pα,pβ, . . .] in (11), such that pα describes the trajectory of robot α. Therefore, (6)

and (11) can be framed in the general form:

Hy = g ⇔

Hαα Hαβ . . .

Hβα Hββ . . .

...
... . . .

yα

yβ
...

 =

gα

gβ
...

 (12)

where we want to compute the vector y = [yα,yβ, . . .] given the (known) block matrix H

and the (known) block vector g; on the right of (12) we partitioned the square matrix H

and the vector g according to the block-structure of y.

In order to introduce the distributed algorithms, we first observe that the linear sys-

tem (12) can be rewritten as: ∑
δ∈Ω

Hαδyδ = gα ∀α ∈ Ω

Taking the contribution of yα out of the sum, we get:

Hααyα = −
∑

δ∈Ω\{α}

Hαδyδ + gα ∀α ∈ Ω (13)

The set of equations (13) is the same as the original system (12), but clearly exposes the

contribution of the variables associated to each robot. The equations (13) constitute the

basis for the Successive Over-Relaxation (SOR) and the Jacobi Over-Relaxation (JOR)

methods that we describe in the following sections.

3.4.1 Distributed Jacobi Over-Relaxation (JOR):

The distributed JOR algorithm [15] starts at an arbitrary initial estimate y(0) = [y
(0)
α ,y

(0)
β , . . .]

and solves the linear system (12) by repeating the following iterations:

y(k+1)
α = (1− γ)y(k)

α + (γ)H−1
αα

− ∑
δ∈Ω\{α}

Hαδy
(k)
δ + gα

 ∀α ∈ Ω (14)

22

where γ is the relaxation factor. Intuitively, at each iteration robot α attempts to solve

eq. (13) (the second summand in (14) is the solution of (13) with the estimates of the

other robots kept fixed), while remaining close to the previous estimate y(k)
α (first summand

in (14)). If the iterations (14) converge to a fixed point, say yα ∀α, then the resulting

estimate solves the linear system (13) exactly [15, page 131]. To prove this fact we only

need to rewrite (14) after convergence:

yα = (1− γ)yα + (γ)H−1
αα

− ∑
δ∈Ω\{α}

Hαδyδ + gα

which can be easily seen to be identical to (13).

In our multi robot problem, the distributed JOR algorithm can be understood in a simple

way: at each iteration, each robot estimates its own variables (y(k+1)
α) by assuming that the

variables of the other robots are constant (y(k)
δ); iterating this procedure, the robots reach an

agreement on the estimates, and converge to the solution of eq. (12). Using the distributed

JOR approach, the robots solve (6) and (11) in a distributed manner. When γ = 1, the

distributed JOR method is also known as the distributed Jacobi (DJ) method.

We already mentioned that when the iterations (14) converge, then they return the ex-

act solution of the linear system. So a natural question is: when do the Jacobi iteration

converge? A general answer is given by the following proposition.

Proposition 2 (Convergence of JOR [15]) Consider the linear systems (12) and define

the block diagonal matrixD .
= diag (Hαα,Hββ, . . .). Moreover, define the matrix:

M = (1− γ)I− γD−1(H −D) (15)

where I is the identity matrix of suitable size. Then, the JOR iterations (14) converge

from any initial estimate if and only if ρ(M) < 1, where ρ(·) denotes the spectral radius

(maximum of absolute value of the eigenvalues) of a matrix.

The proposition is the same of Proposition 6.1 in [15] (the condition that I −M is

invertible is guaranteed to hold as noted in the footnote on page 144 of [15]).

23

It is non-trivial to establish whether our linear systems (6) and (11) satisfy the condi-

tion of Proposition 2. In the experimental section, we empirically observe that the Jacobi

iterations indeed converge whenever γ ≤ 1. For the SOR algorithm, presented in the next

section, instead, we can provide stronger theoretical convergence guarantees.

3.4.2 Distributed Successive Over-Relaxation (SOR)

The distributed SOR algorithm [15] starts at an arbitrary initial estimate y(0) = [y
(0)
α ,y

(0)
β , . . .]

and, at iteration k, applies the following update rule, for each α ∈ Ω:

y(k+1)
α = (1− γ)y(k)

α + (γ)H−1
αα

−∑
δ∈Ω+

α

Hαδy
(k+1)
δ −

∑
δ∈Ω−

α

Hαδy
(k)
δ + gα

 (16)

where γ is the relaxation factor, Ω+
α is the set of robots that already computed the (k+1)-th

estimate, while Ω−α is the set of robots that still have to perform the update (16), exclud-

ing node α (intuitively: each robot uses the latest estimate). As for the JOR algorithm,

by comparing (16) and (13), we see that if the sequence produced by the iterations (16)

converges to a fixed point, then such point satisfies (13), and indeed solves the original

linear system (12). When γ = 1, the distributed SOR method is known as the distributed

Gauss-Seidel (DGS) method.

The following proposition, whose proof trivially follows from [15, Proposition 6.10,

p. 154] (and the fact that the involved matrices are positive definite), establishes when the

distributed SOR algorithm converges to the desired solution.

Proposition 3 (Convergence of SOR) The SOR iterations (16) applied to the linear sys-

tems (6) and (11) converge to the solution of the corresponding linear system (from any

initial estimate) whenever γ ∈ (0, 2), while the iterations do no converge to the correct

solution whenever γ /∈ (0, 2).

According to [15, Proposition 6.10, p. 154], for γ /∈ (0, 2), the SOR iterations (16)

do not converge to the solution of the linear system in general, hence also in practice, we

24

restrict the choice of γ in the open interval (0, 2). In the experimental section, we show that

the choice γ = 1 ensures the fastest convergence.

3.4.3 Communication Requirements for JOR and SOR

In this section we observe that to execute the JOR and SOR iterations (14)(16), robot α only

needs its intra and inter-robot measurements EαI and EαS , and an estimate of the separators,

involved in the inter-robot measurements in EαS . For instance, in the graph of Fig. 2 robot

α only needs the estimates of yβ1 and yβ3 , while does not require any knowledge about the

other poses of β.

Figure 2: Example: (left) trajectory estimation problem and (right) corresponding block
structure of the matrixH .

To understand this fact, we note that both (6) and (11) model an estimation problem

from pairwise relative measurements. It is well known that the matrixH (sometimes called

the Hessian [33]) underlying these problems has a block structure defined by the Laplacian

matrix of the underlying graph [13]. For instance, Fig. 2 (right) shows the block sparsity

of the matrix H describing the graph on the left: off-diagonal block-elements in position

(αi, βj) are non zero if and only if there is an edge (i.e., a measurement) between αi and

βj .

By exploiting the block sparsity of H , we can further simplify the JOR (14) iterations

as:

y(k+1)
α = (1− γ)y(k)

α + (γ)H−1
αα

− ∑
(αi,δj)∈EαS

Hαiδjy
(k)
δj

+ gα

 , ∀α ∈ Ω (17)

25

where we simply removed the contributions of the zero blocks from the sum in (14).

Similarly we can simplify the SOR (16) iterations as:

y(k+1)
α = (1− γ)y(k)

α + (γ)H−1
αα

 −∑
(αi,δj)∈EαS

+

Hαiδjy
(k+1)
δj
−
∑

(αi,δj)∈EαS
−

Hαiδjy
(k)
δj

+ gα

 (18)

where we removed the contributions of the zero blocks from the sum in (16); the sets

EαS+ and EαS− satisfy EαS+ ∪ EαS− = EαS , and are such that EαS+ includes the inter-robot

measurements involving robots which already performed the (k + 1)-th iteration, while

EαS− is the set of measurements involving robots that have not performed the iteration yet

(as before: each robot simply uses its latest estimate).

Eqs. (17) and (18) highlight that the JOR and SOR iterations (at robot α) only require

the estimates for poses involved in its inter-robot measurements EαS . Therefore both JOR

and SOR involve almost no “privacy violation”: every other robot β in the team does not

need to communicate any other information about its own trajectory, but only sends an

estimate of its rendezvous poses.

3.4.4 Flagged Initialization

As we will see in the experimental section and according to Proposition 3, the JOR and SOR

approaches converge from any initial condition when γ is chosen appropriately. However,

starting from a “good” initial condition can reduce the number of iterations to converge,

and in turns reduces the communication burden (each iteration (17) or (18) requires the

robots to exchange their estimate of the separators).

In this work, we follow the path of [12] and adopt a flagged initialization. A flagged

initialization scheme only alters the first JOR or SOR iteration as follows. Before the first it-

eration, all robots are marked as “uninitialized”. Robot α performs its iteration (17) or (18)

without considering the inter-robot measurements, i.e., eqs. (17)-(18) become y(k+1)
α =

H−1
ααgα; then the robot α marks itself as “initialized”. When the robot β performs its iter-

ation, it includes only the separators from the robots that are initialized; after performing

26

the JOR or SOR iteration, also β marks itself as initialized. Repeating this procedure, all

robots become initialized after performing the first iteration. The following iterations then

proceed according to the standard JOR (17) or SOR (18) update. [12] show a significant

improvement in convergence using flagged initialization. As discussed in the experiments,

flagged initialization is also advantageous in our distributed pose graph optimization prob-

lem.

3.5 Implementation Details: Distributed Pose Graph Optimization

Ego-Motion Estimation. Each robot collects 3D scans using Velodyne 32E laser scanner,

RGB-D scans using Orbbec Astra sensor, and inertial measurements using IMU and odom-

etry measurements using wheel sensors. Fig. 22 shows the sensor layout on a Jackal robot.

Relative pose estimates from all the sensors are fused together using OmniMapper[128]

to estimate robot’s ego-motion2. Fig. 3 shows the overview of the egomotion estimation

pipeline.

Specifically, 3D scans from Veldoyne 32E are used to compute relative pose with re-

spect to the previous scan using GICP (generalized iterative closest point [110]). Inertial

measurements from IMU are fused with Wheel Odometry measurements to generate IMU

corrected odometry estimates. Relative pose estimates using RGB-D scans are computed

using ORB-SLAM [85]. Relative pose estimates are then fused using OmniMapper.

Loop Closure. If the RGB-D frame is considered as a key-frame by ORB-SLAM [85],

we find loop closure candidates among other key-frames using bag-of-words vector. There-

after, relative pose estimates against candidate key-frames are computed using RANSAC

over 3D-3D correspondences. If more than 12 inliers are found, the relative pose with

respect to the candidate key-frame is used to generate a loop closure constraint. The result-

ing loop closure constraint is then fused along with other constraints using OmniMapper

(Fig. 3).

2https://github.com/CognitiveRobotics/omnimapper

27

Wheel OdometryRobot Platform

OmniMapper

IMU

RGBD
Frame

ORB SLAM

Laser Scan GICP

IMU-Wheel
Odometry Fusion

IMU corrected
OdometryVelodyne 32E

Laser Scan

Laser Scan

Frame-Frame

Relative Pose

RGBD Frame-Frame Relative Pose

Find loop closure
candidates among
other keyframes

Loop
closure
relative
pose

Compute Relative
Pose

Is a
keyframe

Found loop closure

Figure 3: Overview of Ego-Motion estimation front-end

Robot Communication. During a rendezvous between robots α and β, robot α com-

municates the key-frames to robot β. Robot β finds candidates key-frames among its own

key-frames for every received key-frames using bag-of-words vector. Thereafter, relative

pose estimates against candidate key-frames are computed using RANSAC over 3D-3D

correspondences. If more than 12 inliers are found, the relative pose with respect to the can-

didate key-frame is used to generate a loop closure constraint. The loop closure constraint

is communicated back to the robot α and then optimized using the distributed optimizer.

An overview of the pipeline is shown in Fig. 4.

Next we show the experimental evaluation which includes realistic Gazebo simulations

and field experiments.

28

Robot α

RGBD
Frame

ORB-SLAM

Is a
keyframe

Robot β

RGBD
Frame

ORB-SLAM

Is a
keyframe

Key-frames β
Find loop closure

and compute
relative pose

Distributed
Optimizer

If loop
closure is
found

Figure 4: Overview of Distributed Pose Graph Communication

3.6 Experiments

We evaluate the distributed JOR and SOR along with DJ and DGS approaches in large-scale

simulations (Section 3.6.1 and field tests (Section 3.6.2 The results demonstrate that (i) the

DGS dominates the other algorithms considered in this chapter in terms of convergence

speed, (ii) the DGS algorithm is accurate, scalable, and robust to noise, and (iii) the DGS

requires less communication than techniques from related work (i.e., DDF-SAM).

3.6.1 Simulation Results: Distributed Pose Graph Optimization

In this section, we characterize the performance of the proposed approaches in terms of

convergence, scalability (in the number of robots and separators), and sensitivity to noise.

Simulation setup and performance metrics. For our tests, we created simulation

datasets in six different configurations with increasing number of robots: 4, 9, 16, 25, 36

and 49 robots. The robots are arranged in a 3D grid with each robot moving on a cube,

29

(a) 4 Robots (b) 9 Robots (c) 16 Robots

Figure 5: Simulated 3D datasets with different number of robots. Robots are shown in
different colors. Gray links denote inter-robot measurements.

as shown in Fig. 5. When the robots are at contiguous corners, they can communicate

(gray links). Unless specified otherwise, we generate measurement noise from a zero-mean

Gaussian distribution with standard deviation σR = 5◦ for the rotations and σt = 0.2m for

the translations. Results are averaged over 10 Monte Carlo runs.

In our problem, JOR or SOR are used to sequentially solve two linear systems, (6)

and (11), which return the minimizers of (5) and (10), respectively. Defining, mr
.
=

minr‖Arr − br‖2, we use the following metric, named the rotation estimation error, to

quantify the error in solving (6):

er(k) = ‖Arr
(k) − br‖2−mr (19)

er(k) quantifies how far is the current estimate r(k) (at the k-th iteration) from the minimum

of the quadratic cost. Similarly, we define the pose estimation error as:

ep(k) = ‖App
(k) − bp‖2−mp (20)

with mp
.
= minp ‖Ap p − bp‖2. Ideally, we want er(k) and ep(k) to quickly converge to

zero for increasing k.

Ultimately, the accuracy of the proposed approach depends on the number of iterations,

hence we need to set a stopping condition for the JOR or SOR iterations. We use the

following criterion: we stop the iterations if the change in the estimate is sufficiently small.

More formally, the iterations stop when ‖r(k+1) − r(k)‖≤ ηr (similarly, for the second

linear system ‖p(k+1) − p(k)‖≤ ηp). We use ηr = ηp = 10−1 as stopping condition unless

specified otherwise.

30

iterations, k
0 50 100 150 200

lo
g
e
r
(k
)

-1

0

1

2

3

4
JOR (γ=0.1)

JOR (γ=0.3)

JOR (γ=0.5)

JOR (γ=0.7)

JOR (γ=0.9)

Jacobi Method (γ=1.0)

JOR (γ=1.1)

JOR (γ=1.3)

JOR (γ=1.5)

iterations, k
0 1000 2000 3000

lo
g
e
p
(k
)

-3

0

5

10

15
JOR (γ=0.1)

JOR (γ=0.3)

JOR (γ=0.5)

JOR (γ=0.7)

JOR (γ=0.9)

Jacobi Method (γ=1.0)

JOR (γ=1.1)

JOR (γ=1.3)

JOR (γ=1.5)

(a) Rotation Estimation (b) Pose Estimation

Figure 6: JOR: convergence of (a) rotation estimation and (b) pose estimation for different
values of γ (grid scenario, 49 robots). In the case of pose estimation, the gap between the
initial values of γ > 1 and γ ≤ 1 is due to the bad initialization provided by the rotation
estimation for γ > 1.

Comparisons among the distributed algorithms. In this section we consider the

scenario with 49 robots. We start by studying the convergence properties of the JOR and

SOR algorithms in isolation. Then we compare the two algorithms in terms of convergence

speed. Fig. 6 shows the rotation and the pose error versus the number of iterations for

different choices of the parameter γ for the JOR algorithm. Fig. 6a confirms the result

of Proposition 2: JOR applied to the rotation subproblem converges as long as γ ≤ 1.

Fig. 6a shows that for any γ > 1 the estimate diverges, while the critical value γ = 1

(corresponding to the DJ method) ensures the fastest convergence rate. Fig. 7 shows the

rotation and the pose error versus the number of iterations for different choices of the

parameter γ ∈ (0, 2) for the SOR algorithm. The figure confirms the result of Proposition 3:

the SOR algorithm converges for any choice of γ ∈ (0, 2). Fig. 7a shows that choices of γ

close to 1 ensures fast convergence rates, while Fig. 7b established γ = 1 (corresponding

to the DGS method) as the parameter selection with faster convergence. In summary, both

JOR and SOR have top performance when γ = 1. Later in this section we show that γ = 1

is the best choice independently on the number of robots and the measurement noise.

Let us now compare JOR and SOR in terms of convergence. Fig. 8 compares the

31

iterations, k
0 10 20 30

lo
g
e
r
(k
)

0

1

2

3

4
SOR (γ=0.1)

SOR (γ=0.3)

SOR (γ=0.5)

SOR (γ=0.7)

SOR (γ=0.9)

Gauss-Seidel (γ=1.0)

SOR (γ=1.1)

SOR (γ=1.3)

SOR (γ=1.5)

iterations, k
0 50 100 150 200

lo
g
e
p
(k
)

-2

0

2

4

6

8
SOR (γ=0.1)

SOR (γ=0.3)

SOR (γ=0.5)

SOR (γ=0.7)

SOR (γ=0.9)

Gauss-Seidel (γ=1.0)

SOR (γ=1.1)

SOR (γ=1.3)

SOR (γ=1.5)

(a) Rotation Estimation (b) Pose Estimation

Figure 7: SOR: convergence of (a) rotation estimation and (b) pose estimation for differ-
ent values of γ (grid scenario, 49 robots).

iterations, k
0 50 100 150 200

lo
g
e
r
(k
)

-3

-2

-1

0

1

2

3

JOR (γ=1.0)

SOR (γ=1.0)

iterations, k
0 50 100 150 200

lo
g
e
p
(k
)

-2

-1

0

1

2

3

4

JOR (γ=1.0)

SOR (γ=1.0)

(a) Rotation Estimation (b) Pose Estimation

Figure 8: JORvs SOR: convergence of (a) rotation estimation and (b) pose estimation for
the JOR and SOR algorithms with γ = 1 (grid scenario, 49 robots).

convergence rate of SOR and JOR for both the rotation subproblem (Fig. 8a) and the pose

subproblem (Fig. 8b). We set γ = 1 in JOR and SOR since we already observed that

this choice ensures the best performance. The figure confirms that SOR dominates JOR in

both subproblems. Fig. 9 shows the number of iterations for convergence (according to our

stopping conditions) and for different choices of the parameter γ. Once again, the figure

confirms that the SOR with γ = 1 is able to converge in the smallest number of iterations,

requiring only few tens of iterations in both the rotation and the pose subproblem.

32

(a) Rotation Estimation (b) Pose Estimation

Figure 9: JORvs SOR: number of iterations required for (a) rotation estimation and (b)
pose estimation for the JOR and SOR algorithms with γ = 1 (grid scenario, 49 robots). The
average number of iterations is shown as a solid line, while the 1-sigma standard deviation
is shown as a shaded area.

We conclude this section by showing that setting γ = 1 in SOR ensure faster conver-

gence regardless the number of robots and the measurement noise. Fig. 10 compares the

number of iterations required to converge for increasing number of robots for varying γ

values. Similarly Fig. 11 compares the number of iterations required to converge for in-

creasing noise for varying γ value. We can see that in both the cases γ = 1 has the fastest

convergence (required the least number of iterations) irrespective of the number of robots

and measurement noise. Since SOR with γ = 1, i.e., the DGS method, is the top performer

in all test conditions, in the rest of the chapter we restrict our analysis to this algorithm.

Flagged initialization. In this paragraph we discuss the advantages of the flagged

initialization. We compare the DGS method with flagged initialization against a naive ini-

tialization in which the variables (r(0) and p(0), respectively) are initialized to zero. The

results, for the dataset with 49 robots, are shown in Fig. 12. In both cases the estimation

errors go to zero, but the convergence is faster when using the flagged initialization. The

speed-up is significant for the second linear system (Fig. 12b). We noticed a similar advan-

tage across all tested scenarios. Therefore, in the rest of the chapter we always adopt the

flagged initialization.

33

γ

0 0.5 1 1.5

#
R
o
ta
ti
o
n
It
e
ra
ti
o
n
s

0

10

20

30

40

4 Robots

9 Robots

16 Robots

25 Robots

36 Robots

49 Robots

γ

0 0.5 1 1.5

#
P
o
se

It
e
ra
ti
o
n
s

0

200

400

600

800 4 Robots

9 Robots

16 Robots

25 Robots

36 Robots

49 Robots

(a) Rotation Estimation (b) Pose Estimation

Figure 10: SOR: number of iterations required for (a) rotation estimation and (b) pose
estimation in the SOR algorithm for different choices of γ and increasing number of robots.

γ

0 0.5 1 1.5

#
R
o
ta
ti
o
n
It
e
ra
ti
o
n
s

0

20

40

60

80

100

1°

5°

10°

15°

20°

γ

0 0.5 1 1.5

#
P
o
se

It
e
ra
ti
o
n
s

0

200

400

600

800

1000

0.1m

0.3m

0.5m

0.8m

1.0m

(a) Rotation Estimation (b) Pose Estimation

Figure 11: SOR: number of iterations required for (a) rotation estimation and (b) pose
estimation in the SOR algorithm for different choices of γ and increasing measurement
noise.

Stopping conditions and anytime flavor. This section provides extra insights on the

convergence of the DGS method. Fig. 13a-b show the evolution of the rotation and pose

error for each robot in the 49-robot grid: the error associated to each robot (i.e., to each

subgraph corresponding to a robot trajectory) is not monotonically decreasing and the error

for some robot can increase to bring down the overall error. Fig. 13c-d report the change in

the rotation and pose estimate for individual robots. Estimate changes become negligible

within few tens of iterations. As mentioned at the beginning of the section, we stop the

DGS iterations when the estimate change is sufficiently small (below the thresholds ηr and

34

iterations, k
0 50 100 150 200

lo
g
e
r
(k
)

-6

-4

-2

0

2

4

6

Without Flagged Init

With Flagged Init

iterations, k
0 200 400 600 800 1000

lo
g
e
p
(k
)

-8

-6

-4

-2

0

2

4

6

8

Without Flagged Init

With Flagged Init

(a) Rotation Error (b) Pose Error

Figure 12: DGS: Comparison between flagged and non-flagged initialization on the grid
scenario with 49 robots. Average estimation errors (solid line) and 1-sigma standard devi-
ation (shaded area) are in log scale.

ηp).

Fig. 14 shows the estimated trajectory after 10 and 1000 iterations of the DGS algo-

rithm for the 49-robot grid. The odometric estimate (Fig. 14a) is shown for visualization

purposes, while it is not used in our algorithm. We can see that the estimate after 10 iter-

ations is already visually close to the estimate after 1000 iterations. The DGS algorithm

has an any-time flavor: the trajectory estimates are already accurate after few iterations and

asymptotically converge to the centralized estimate.

Scalability in the number of robots. Fig. 15 shows the average rotation and pose

errors for all the simulated datasets (4, 9, 16, 25, 36 and 49 robots). In all cases the errors

quickly converge to zero. For large number or robots the convergence rate becomes slightly

slower, while in all cases the errors is negligible in few tens of iterations.

While so far we considered the errors for each subproblem (er(k) and ep(k)), we now

investigate the overall accuracy of the DGS algorithm to solve our original problem (3).

We compare the proposed approach against the centralized two-stage approach of [20] and

against a standard (centralized) Gauss-Newton (GN) method, available in gtsam ([35]). We

use the cost attained in problem (3) by each technique as accuracy metric (the lower the

better). Table 1 reports the number of iterations and the cost attained in problem (3), for

35

#Iteration
0 50 100 150 200

L
in
ea
r
R
ot
at
io
n
G
ra
p
h
:
χ
2
E
rr
or

(l
o
g)

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

#Iteration
0 50 100 150 200

L
in
ea
r
P
os
e
G
ra
p
h
:
χ
2
E
rr
or

(l
og

)

-0.6

-0.4

-0.2

0

0.2

0.4

(a) Rotation Error (b) Pose Error

#Iteration
0 50 100 150 200

L
in
ea
r
R
ot
at
io
n
E
st
im

at
e
C
h
an

ge
(l
og
)

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

#Iteration
0 50 100 150 200

L
in
ea
r
P
os
e
E
st
im

at
e
C
h
an

ge
(l
og

)

-4

-3

-2

-1

0

1

2

3

(c) Rotation Estimate Change (d) Pose Estimate Change

Figure 13: DGS: convergence statistics of rotation estimation and pose estimation for
each robot (49 Robots). Robots are represented by different color lines.

(a) Initial (b) 10 iterations (c) 1000 iterations

Figure 14: DGS: Trajectory estimates for the scenario with 49 robots. (a) Odometric
estimate (not used in our approach and only given for visualization purposes), (b)-(c) DGS
estimates after given number of iterations.

36

iterations, k
0 20 40 60 80 100

e
r
(k
)

0

2

4

6

8

4 Robots

9 Robots

16 Robots

25 Robots

36 Robots

49 Robots

iterations, k
0 20 40 60 80 100

e
p
(k
)

0

2

4

6

8

10
4 Robots

9 Robots

16 Robots

25 Robots

36 Robots

49 Robots

(a) Rotation Error (b) Pose Error

Figure 15: DGS: convergence for scenarios with increasing number of robots.

the compared techniques. The number of iterations is the sum of the number of iterations

required to solve (6) and (11). The cost of the DGS approach is given for two choices of the

thresholds ηr and ηp. As already reported in [20], the last two columns of the table confirm

that the centralized two-stage approach is practically as accurate as a GN method. When

using a strict stopping condition (ηr = ηp = 10−2), the DGS approach produces the same

error as the centralized counterpart (difference smaller than 1%). Relaxing the stopping

conditions to ηr = ηp = 10−1 implies a consistent reduction in the number of iterations, at

a small loss in accuracy (cost increase is only significant for the scenario with 49 robots).

In summary, the DGS algorithm (with ηr = ηp = 10−1) ensures accurate estimation within

few iterations, even for large teams.

Sensitivity to measurement noise. Fig. 16 shows the average rotation and pose errors

for increasing levels of noise in the scenario with 49 robots. Also in this case, while larger

noise seems to imply longer convergence tails, the error becomes sufficiently small after

few tens of iterations.

Table 2 evaluates the performance of the DGS method in solving problem (3) for in-

creasing levels of noise, comparing it against the centralized two-stage approach of [20]

and the Gauss-Newton method. The DGS approach is able to replicate the accuracy of the

centralized two-stage approach, regardless the noise level, while the choice of thresholds

37

Table 1: Number of iterations and cost attained in problem (3) by the DGS algorithm (for
two choices of the stopping conditions), versus a centralized two-stage approach and a GN
method. Results are shown for scenarios with increasing number of robots. Measurement
noise is generated from a Gaussian distribution with standard deviation σR = 5◦ for the
rotations and σt = 0.2m for the translations. Results are averaged over 10 Monte Carlo
runs.

#Robots
Distributed Gauss-Seidel Centralized

ηr = ηp = 10−1 ηr = ηp = 10−2 Two-Stage GN
#Iter Cost % Diff. #Iter Cost % Diff. Cost Cost

w/ GN w/ GN

4 10 1.9 0 65 1.9 0 1.9 1.9
9 14 5.3 1.9 90 5.2 0 5.2 5.2

16 16 8.9 2.2 163 8.8 1.14 8.8 8.7
25 17 16.2 1.88 147 16.0 0.62 16.0 15.9
36 28 22.9 1.77 155 22.7 0.88 22.6 22.5
49 26 35.1 8.0 337 32.9 1.23 32.7 32.5

ηr = ηp = 10−1 ensures accurate estimation within few tens of iterations.

Scalability in the number of separators. In order to evaluate the impact of the num-

ber of separators on convergence, we simulated two robots moving along parallel tracks for

10 time stamps. The number of communication links were varied from 1 (single commu-

nication) to 10 (communication at every time), hence the number of separators (for each

robot) ranges from 1 to 10. Fig. 17a shows the number of iterations required by the DGS

algorithm (ηr = ηp = 10−1), for increasing number of communication links. The number

of iterations is fairly insensitive to the number of communication links.

Fig. 17b compares the information exchanged in the DJ algorithm against a state-of-the-

art algorithm, DDF-SAM ([30]). In DDF-SAM, each robot sends KGN

[
sBp + (sBp)

2]
bytes, where KGN is the number of iterations required by a GN method applied to prob-

lem (3) (we consider the best case KGN = 1), s is the number of separators and Bp is the

size of a pose in bytes. In the DGS algorithm, each robots sendsKr
DGS (sBr)+K

p
DGS (sBp)

bytes, where Kr
DGS and Kp

DGS are the number of iterations required by the DGS algorithm

38

iterations, k
0 5 10 15 20

e
r
(k
)

0

50

100

150

1°

5°

10°

15°

20°

iterations, k
0 5 10 15

e
p
(k
)

0

10

20

30

40

50

60

0.1m

0.3m

0.5m

0.8m

1.0m

(a) Rotation Noise (b) Translation Noise

Figure 16: DGS: convergence for increasing levels of noise (scenario with 49 Robots).
(a) Average rotation error for σR = {1, 5, 10, 15, 20}◦. (b) Average pose error for σt =
{0.1, 0.3, 0.5, 0.8, 1.0}m.

Table 2: Number of iterations and cost attained in problem (3) by the DGS algorithm (for
two choices of the stopping conditions), versus a centralized two-stage approach and a GN
method. Results are shown for increasing measurement noise in a scenario with 49 robots .

Measurement Distributed Gauss-Seidel Centralized
noise ηr=ηp=10−1 ηr=ηp=10−2 Two-Stage GN

σr(
◦) σt(m) #Iter Cost % Diff. #Iter Cost % Diff. Cost Cost

w/ GN w/ GN

1 0.05 8.5 2.1 16.0 51.0 1.8 0 1.8 1.8
5 0.1 21.8 14.8 6.47 197.8 14.0 0.71 14.0 13.9
10 0.2 35.6 58.4 4.28 277.7 56.6 1.07 56.6 56.0
15 0.3 39.8 130.5 3.57 236.8 128.4 1.90 129.3 126.0

to solve the linear systems (6) and (11), respectively, and Br is the size of a rotation (in

bytes). We assume Br = 9 doubles (72 bytes)3 and Bp = 6 doubles (48 bytes). The num-

ber of iterations Kr
DGS and Kp

DGS are the one plotted in Fig. 17a. From Fig. 17b we see that

the communication burden of DDF-SAM quickly becomes unsustainable, while the linear

increase in communication of the DGS algorithm implies large communication saving.

Realistic simulations in Gazebo. We tested our DGS-based approach in two scenarios

3In the linear system (6) we relax the orthogonality constraints hence we cannot parametrize the rotations
with a minimal 3-parameter representation.

39

#Communication Links

0 2 4 6 8 10

#
It
e
ra

ti
o
n
s

5

10

15

20

Rotation Estimation

Pose Estimation

#Communcation Links
2 4 6 8 10C

o
m

m
u
n
ic

a
ti
o
n
 B

u
rd

e
n
 (

b
y
te

s
)

×10
5

0

0.5

1

1.5

2

2.5

Distributed Gauss-Seidel

DDF-SAM

(a) (b)

Figure 17: DGSvs DDF-SAM: (a) average number of iterations versus number of sepa-
rators for the DGS algorithm. (b) communication burden (bytes of exchanged information)
for DGS and DDF-SAM, for increasing number of separators.

in Gazebo simulations as shown in Fig. 18. The robots start at fixed locations and explore

the environment by moving according to a random walk. Each robot is equipped with a

3D laser range finder, which is used to intra-robot and inter-robot measurements via scan

matching. In both scenarios, two robots communicate only when they are within close

proximity of each other (0.5m in our tests). Results are average over 100 Monte-Carlo

runs.

Fig. 18 shows the aggregated point cloud corresponding to the DGS trajectory estimate,

for one of the runs. The point cloud closely resembles the ground truth environment shown

in the same figure. Fig. 19a shows that number of steps required to explore the whole

environment quickly decreases with increasing number of robots. This intuitive observation

motivates our interest towards mapping techniques that can scale to large teams of robots.

Fig. 19b reports trajectory samples for different robots in our Monte Carlo analysis.

3.6.2 Field Experiments: Distributed Pose Graph Optimization

We tested the DGS approach on field data collected by two to ten Jackal robots (Fig. 22),

moving in a military training facility, Georgia Tech IRIM lab, and Klaus building (3rd

Floor).

40

GroundTruth Estimate

GroundTruth Estimate

Figure 18: Gazebo tests: ground truth environments and aggregated point clouds corre-
sponding to the DGS estimate.

Figs. 26, 25, 27 show the aggregated 3D point clouds (left), the estimates trajectories

(center), and the aggregated occupancy grid map (right) over multiple runs in a military

training facility. The central part of the figures compares the DGS estimate against the

DDF-SAM estimate and the corresponding centralized estimate. Note that the test sce-

narios cover a broad set of operating conditions. For instance Fig. 25 corresponds to ex-

periments with 4 robots moving in indoor environment, while Fig. 26 corresponds to tests

performed in a mixed indoor-outdoor scenario (with robots moving on gravel when out-

door, Fig. 23). The four tests of Fig. 27 correspond to early results with 2 robots for which

we do not have a comparison against DDF-SAM. Fig. 28 corresponds to the additional tests

done with 10 robots in the military training facility. Fig. 30 corresponds to the tests done

with 11 robots in the IRIM lab. Fig. 32 corresponds to the tests done with 5 robots in Klaus

building.

41

#Robots
0 5 10 15 20

#
E

x
p
lo

ra
ti
o
n
 S

te
p
s

0

1000

2000

3000

4000

5000

6000

(a) Exploration steps (b) Monte Carlo Runs

Figure 19: (a) Number of exploration steps required to explore a fixed-sized grid with
increasing number of robots. (b) Samples of robot trajectories from our Gazebo-based
Monte Carlo experiments.

Quantitative results are given in Table 3, which reports the cost attained by the DGS

algorithm as compared to the centralized GN cost and DDF-SAM. Number of iterations,

ATE* and ARE* are also shown.

These metrics ATE* and ARE* are formally defined below.

Absolute Translation Error (ATE*). Similar to the formulation by Sturm et al. [115],

the average translation error measures the absolute distance between the trajectory poses

estimated by our approach versus the centralized GN method. The ATE* is defined as:

ATE∗ =

(
1∑

α∈Ω nα

∑
α∈Ω

nα∑
i=1

‖tαi − t∗αi‖
2

) 1
2

(21)

where tαi is the position estimate for robot α at time i, t∗αi is the corresponding estimate

from GN, and nα is the number of poses in the trajectory of α.

Absolute Rotation Error (ARE*). The average rotation error is computed by evaluating

the angular mismatch between the trajectory rotations produced by the proposed approach

versus a centralized GN method:

ARE∗ =

(
1∑

α∈Ω nα

∑
α∈Ω

nα∑
i=1

‖Log
(
(R∗αi)

TRαi

)
‖2

) 1
2

(22)

where Rαi is the rotation estimate for robot α at time i, R∗αi is the corresponding estimate

from GN.

42

(a) Rotation Noise (b) Translation Noise

Figure 20: Convergence for increasing levels of noise (scenario with 2 Robots in Gazebo).
(a) Average rotation estimation error for σR = {1, 5, 10, 15, 20}◦. (b) Average pose estima-
tion error for σt = {0.1, 0.3, 0.5, 0.8, 1.0}m.

Each line of the table shows statistics for each of the 15 field tests in the military train-

ing facility. The first four rows (tests 0 to 3) correspond to tests performed in a mixed

indoor-outdoor scenario (Fig. 26). The next seven rows (tests 4 to 10) correspond to tests

performed with 4 robots in an indoor environment. The last four rows (tests 11 to 14) cor-

respond to early results with 2 robots. Higher ATE* and ARE* in the first few rows is due

to the fact that the robots move on gravel in outdoors which introduces larger odometric

errors. Consistently with what we observed in the previous sections, larger measurement

errors may induce the DGS algorithm to perform more iterations to reach consensus (e.g.,

test 3). The columns “#vertices” and “#edges” describe the size of the overall factor graph

(including all robots), while the column “#links” reports the total number of rendezvous

events. In all the tests DDF-SAM performed worse than DGS which is shown by higher

cost attained by DDF-SAM as compared to DGS. This is because DDF-SAM requires

good linearization points to generate condensed graphs and instead bad linearization points

during communication can introduce linearization errors resulting in higher cost. Fig. 24

shows the corresponding histogram visualization comparing the cost attained by the DGS

43

(a) Rotation Noise (b) Translation Noise

Figure 21: Convergence for increasing levels of noise (scenario with 4 Robots in Gazebo).
(a) Average rotation estimation error for σR = {1, 5, 10, 15, 20}◦. (b) Average pose estima-
tion error for σt = {0.1, 0.3, 0.5, 0.8, 1.0}m.

algorithm and centralized Two-Stage and GN algorithm. Fig 29, 31 and 33 show the per-

robot ATE* comparison w.r.t centralized for the data collection corresponding to additional

tests as shown in Fig. 28, 30 and 32. We can see that ATE* in all the three scenarios is

less than 0.1 cm which shows that the distributed estimate is accurate as the centralized

estimate even when number of robots is scaled up to more than 10.

44

Orbbec Astra
RGB-D sensor

Velodyne 32-E
Laser Scanner IMU

Wheel
Odometry

Figure 22: Clearpath Jackal robot used for the field tests: platform and sensor layout;

45

Figure 23: Clearpath Jackal robot moving on gravel.

Figure 24: Histogram visualization comparing the cost attained by DGS algorithm on
field data as compared to the centralized Two-Stage, GN and DDF-SAM method. It shows
that all the proposed approaches are close to GN, while DDF-SAM has worse performance.
The length of y-axis (cost) is limited to 20 for visualization purposes. Additional quantita-
tive results are given in Table 3.

46

Point Cloud DGS DDF-SAM Centralized Occupancy Grid

Figure 25: Indoor scenarios: (Left) aggregated point cloud obtained from the DGS trajec-
tory estimate. (Center) estimated trajectories for DGS, GN and DDF-SAM (robots shown
in red, blue, green and black for the distributed techniques). (Right) overall occupancy grid
map obtained from the DGS trajectory estimate.

47

Point Cloud DGS DDF-SAM Centralized Occupancy Grid

Figure 26: Mixed indoor-outdoor scenarios: (Left) aggregated point cloud obtained from
the DGS trajectory estimate. (Center) estimated trajectories for DGS, GN and DDF-SAM
(robots shown in red, blue, green and black for the distributed techniques). (Right) overall
occupancy grid map obtained from the DGS trajectory estimate.

48

Point Cloud DGS Centralized Occupancy Grid

- -

-

Figure 27: Early tests with 2 robots: (Left) aggregated point cloud obtained from the
DGS trajectory estimate. (Center) estimated trajectories for DGS and GN. (Right) overall
occupancy grid map obtained from the DGS trajectory estimate.

49

Table 3: Performance of DGS on field data as compared to the centralized GN method
and DDF-SAM. Number of iterations, ATE* and ARE* with respect to centralized Gauss-
Newton estimate are also shown.

#Test #vert. #edges #links

Distributed Gauss-Seidel Centralized
DDF

ηr = ηp = 10−1 ηr = ηp = 10−2 2-Stage GN SAM

#Iter Cost ATE* ARE* #Iter Cost ATE* ARE* Cost Cost

0 194 253 16 12 1.42 0.21 1.63 197 1.40 0.07 0.67 1.40 1.40 4.86

1 511 804 134 10 0.95 1.22 6.64 431 0.91 1.18 6.37 0.89 0.89 6.88

2 547 890 155 21 1.99 1.03 4.74 426 1.95 1.08 4.79 1.93 1.93 12.54

3 657 798 47 176 0.32 0.68 2.40 446 0.32 0.69 2.06 0.32 0.32 2.39

4 510 915 179 23 10.89 1.10 6.69 782 10.57 0.71 4.53 10.51 10.50 37.94

5 418 782 151 13 3.02 0.51 5.75 475 2.92 0.39 4.32 2.91 2.90 18.31

6 439 720 108 26 9.28 0.68 5.08 704 9.12 0.31 2.39 9.10 9.07 72.76

7 582 1152 228 10 3.91 0.31 3.40 579 3.78 0.26 2.43 3.78 3.78 16.38

8 404 824 183 11 1.92 0.13 1.78 410 1.89 0.12 1.25 1.89 1.89 6.82

9 496 732 86 41 4.30 0.54 4.20 504 4.29 0.45 3.04 4.28 4.27 21.53

10 525 923 147 15 5.56 0.39 3.93 577 5.43 0.23 2.04 5.43 5.40 19.59

11 103 107 3 71 0.85 1.58 14.44 328 0.84 0.27 2.18 0.84 0.84 -

12 227 325 50 16 0.79 1.11 10.44 511 0.71 0.80 7.02 0.68 0.68 -

13 77 127 26 10 0.33 0.34 2.23 78 0.26 0.21 1.25 0.26 0.26 -

14 322 490 85 28 1.42 0.83 5.05 606 1.07 0.47 2.10 1.04 1.04 -

50

DGS

Centralized

Figure 28: Test with 10 robots in a military training facility. (Top) Shows the aggregated
point cloud and trajectories estimated by DGS method. (Bottom) Shows the aggregated
point cloud and trajectories estimated by the centralized GN method. Trajectories and
point clouds for different robots are shown using different colors.

51

Figure 29: Per-Robot ATE* comparison w.r.t Centralized for data collected in military
training facility given in Fig. 28.

52

DGS

Centralized

Figure 30: Test with 11 robots in the IRIM lab. (Top) Shows the aggregated point cloud
and trajectories estimated by DGS method. (Bottom) Shows the aggregated point cloud
and trajectories estimated by the centralized GN method. Trajectories and point clouds for
different robots are shown using different colors.

53

Figure 31: Per-Robot ATE* comparison w.r.t Centralized for data collected in IRIM lab
given in Fig. 30.

54

DGS

Centralized

Figure 32: Test with 5 robots in the Klaus building. (Top) Shows the aggregated point
cloud and trajectories estimated by DGS method. (Bottom) Shows the aggregated point
cloud and trajectories estimated by the centralized GN method. Trajectories and point
clouds for different robots are shown using different colors. The misalignments at the
bottom left is due to the lack of inter-robot loop closures in that region.

55

Figure 33: Per-Robot ATE* comparison w.r.t Centralized for data collected in Klaus lab
given in Fig. 32.

56

3.7 Conclusions

We investigated distributed algorithms to estimate the 3D trajectories of multiple cooper-

ative robots from relative pose measurements. Our contribution is the design of a 2-stage

approach for distributed pose estimation and propose a number of algorithmic variants.One

of these algorithms, the Distributed Gauss-Seidel (DGS) method, is shown to have excel-

lent performance in practice: (i) its communication burden scale linearly in the number of

separators and respect agents’ privacy, (ii) it is robust to noise and the resulting estimates

are sufficiently accurate after few communication rounds, (iii) the approach is simple to

implement and scales well to large teams. We demonstrated the effectiveness of the DGS

approach in extensive simulations and field tests.

57

CHAPTER IV

DISTRIBUTED OBJECT BASED SLAM WITH KNOWN OBJECT

MODELS

4.1 Introduction

Dealing with bandwidth constraints is challenging for two reasons. First, most approaches

for multi robot SLAM imply a communication burden that grows quadratically in the num-

ber of locations co-observed by the robots [29]; these approaches are doomed to quickly

hit the bandwidth constraints. In the previous chapter (Ch. 3) we alleviated this issue by

proposing an approach, based on the distributed Gauss-Seidel method, which requires lin-

ear communication. The second issue regards the communication cost of establishing loop

closures among robots. When the robots are not able to directly detect each other, loop clo-

sures have to be found by comparing raw sensor data; in our setup the robots are equipped

with an RGBD camera and exchanging multiple 3D point clouds quickly becomes imprac-

tical in presence of communication bounds. In this chapter we address this second issue by

using an object-level map representation.

Related Work. Traditional approaches for multi robot mapping use low-level primi-

tives like points and lines to model the geometry of the environment [32]; these maps be-

come memory-intensive in long-term operation, contain very redundant information (e.g.,

use thousands of points to represent a planar surface), and lack semantic understanding,

which is a key element in a wide range of tasks (e.g., human robot interaction or manipu-

lation). For these reasons, semantic mapping has attracted a conspicuous interest from the

community, starting from early papers [72], to more recent works which use object tem-

plates [108], door signs [101], or planes [127] for mapping. A recent survey can be found

58

in [70]. Distributed estimation in multi robot systems is currently an active field of re-

search, with special attention being paid to communication constraints [94], heterogeneous

teams [59] and robust data association [37]. The robotic literature offers distributed im-

plementations of different estimation techniques, including Extended Kalman filters [103],

information filters [124], and Gaussian elimination [29].

Contribution. In this chapter we advocate the use of higher-level map representations

as a tool to enable operation in bandwidth-constrained multi robot scenarios. Maps aug-

mented with objects provide a number of advantages: objects (including planes and other

geometric shapes) can be represented in a compact manner and provide a richer and human-

understandable description of the environment. Objects are more discriminative, which

helps data association and loop-closure detection. Finally, object representations reduce

the computational complexity of SLAM by reducing the number of variables (intuitively,

we estimate the pose of few objects rather than the position of several 3D points).

We propose an approach for Multi Robot Object-based SLAM with two distinctive

features. The first is the front-end, which performs accurate object detection using deep

learning. Deep learning provides an effective tool to generalize early work on object-based

mapping [108] to a large number of object categories. The second is the back-end, which

implements distributed pose graph optimization using the distributed Gauss-Seidel method,

described in our previous work [23]. We show that the combination of these two techniques

reduces the memory requirement and information exchange among robots, allows accurate

and parsimonious large-scale mapping, and scales to large teams.

Section 4.2 introduces the additional mathematical notation and formalizes the problem

of distributed object-based SLAM. Section 4.3 presents the implementation details of our

distributed object-based SLAM system.

59

Figure 34: Factor graph representation of Multi-Robot Object based SLAM. xαi and xβi
denote the poses assumed by robot α and β at time i respectively. The pose of the kth object
as estimated by robot α and β is denoted with oαk and oβk respectively. Green dots shows
inter-robot factors whereas orange and purple dots shows intra-robot factors.

4.2 Problem Formulation: Distributed Object-based SLAM

We consider a multi robot system as defined in Section 3.2. Each robot, in addition to

estimating its own trajectory using local measurements and occasional communication with

other robots, also estimates the pose of a set of objects in the environment. We model each

trajectory as a finite set of poses; the trajectory of robot α is xα = [xα1 ,xα2 , . . .]. In

addition, we denote with oαk ∈ SE(3) the pose of the kth object as estimated by of robot α

(Fig. 34).

Measurements. Similar to distributed pose graph optimization (Section 3.2), we as-

sume that each robot acquires two types of relative pose measurements: intra-robot and

inter-robot measurements. The intra-robot measurements consist of the odometry mea-

surements, which constrain consecutive robot poses (e.g., xαi and xαi+1
in Fig. 34), and

60

object measurements which constrains robot poses with the corresponding visible object

landmarks (e.g., xαi and oαk in Fig. 34). Contrarily to Section 3.2, the inter-robot measure-

ments relate the object poses observed by different robots. During a rendezvous between

robot α and robot β, each robot shares the label and pose of detected object landmarks

with the other robot. Then, for each object observed by both robots, the teammates add

an inter-robot measurements, enforcing the object pose estimate to be consistent across the

teammates. For instance, if oβk and oαk in Fig. 34 model the pose of the same object, then the

two poses should be identical in the global coordinate frame. For this reason, inter-robot

measurement between a pair of associated object poses is the identity.

The intra-robot object measurements follow the same measurements model of eq. (1).

For instance, if the robot α at time i and at pose xαi observes an object at pose oαk , then the

corresponding measurement z̄xαioαk
measures the relative pose between xαi and oαk . Similarly

we denote inter-robot measurement between object poses oαk and oβk as z̄o
α
k

oβk
. In order to

ensure that the object pose estimate is consistent across teammates, we define the inter-

robot measurement model z̄o
α
k

oβk
as:

z̄
oαk

oβk

.
= (I,0), with:

R
oαk

oβk
= (Roαk

)TRoβk
Rε = I

t̄
oαk

oβk
= (Roαk

)T(toβk
−toαk)+tε = 0

(23)

where the relative object pose measurement z̄o
α
k

oβk
includes the relative rotation measure-

ments Roαk

oβk
= I, which describes the attitude of the estimated object pose oβk , Roβj

with

respect to the reference frame of robot α, “plus” a random rotation Rε (estimation noise),

and the relative position measurement t̄o
α
k

oβk
= 0, which describes the position toβk in the

reference frame of robot α, plus random noise tε.

In the following, we denote with EαI the set of intra-robot odometry for robot α, while

we call EI the set of intra-robot odometry measurements for all robots in the team, i.e., EI =

∪α∈ΩEαI . Similarly the set of intra-robot object measurements for robot α is denoted as Eαo ,

whereas the set of all intra-robot object measurements is denoted as Eo. Similar to Section

61

3.2, the set of inter-robot measurements involving robot α is denoted with EαS . The set of

all inter-robot measurements is denoted with ES . The set of all available measurements is

then E = EI ∪EO∪ES . Note that each robot only has access to its own intra and inter-robot

measurements EαI , EαO and EαS .

ML trajectory and objects estimation. Let us collect all robot trajectories and object

poses in a (to-be-estimated) set of robot poses x = [xα ,xβ ,xγ , . . .] and set of object poses

o = [oα,oβ,oγ, . . .]. The ML estimate for x and o is defined as the maximum of the

measurement likelihood:

x?,o? = arg max
x,o

∏
(xαi ,xαi+1)∈EI

L(z̄
xαi
xαi+1

| x)︸ ︷︷ ︸
odometry factors

∏
(xαi ,o

α
k)∈EO

L(z̄
xαi
oαk
| x,o)︸ ︷︷ ︸

intra-robot object-measurement factors∏
(oαi ,o

β
j)∈ES

L(z̄
oαi

oβj
| x,o)︸ ︷︷ ︸

inter-robot object-object factors

(24)

where we used the same assumptions on measurement noise as in Section 3.2. Defining

X = x ∪ o, we rewrite eq. (28) as:

X ? = arg max
X

∏
(αi,βj)∈E

L(z̄αiβj | X) (25)

Since the optimization problem in eq. (29) has the same structure of the one in eq. (2),

we follow the same steps to solve it in a distributed manner using the Distributed Gauss-

Seidel method.

The next section presents the implementation details of our distributed object-based

SLAM system.

62

Convolutional
Network based

Object Detection

RGBD Image

Segment
Detected Object

If successful

Data associate w.r.t
known instances in the

map

Add object-pose factor
to the matching object

instance

Estimate Object Pose
w.r.t 3D Model of the

detected object

Add new object
landmark and

object-pose factor

if associated

if not associated

SLAM

Figure 35: Flowchart of Object based SLAM

4.3 Implementation Details: Distributed Object based SLAM

Ego-Motion Estimation. Each robot collects 3D scans using Velodyne 32E, RGB-D scans

using Orbbec Astra sensor, and inertial measurements using IMU and odometry measure-

ments using wheel sensors. Fig. 22 shows the sensor layout on a Jackal robot. Relative

pose estimates from all the sensors are fused together using OmniMapper[128] to estimate

robot’s ego-motion1. Fig. 3 shows the overview of ego-motion estimation.

1https://github.com/CognitiveRobotics/omnimapper

63

Specifically, 3D scans from Veldoyne 32E are used to compute relative pose with re-

spect to the previous scan using GICP (generalized iterative closest point [110]). Inertial

measurements from IMU are fused with Wheel Odometry measurements to generate IMU

corrected odometry estimates. Relative pose estimates using RGB-D scans are computed

using ORB-SLAM [85]. Relative pose estimates are then fused using OmniMapper.

Object detection and pose estimation. In our approach, each RGB frame (from

RGBD) is passed to the YOLO object detector [99, 100], which detects objects at 45 frames

per second. Compared to object-proposal-based detectors, YOLO is fast, since it avoids the

computation burden of extracting object proposals, and is less likely to produce false pos-

itives in the background. We fine-tune the YOLO detector on a subset of objects from the

BigBird dataset ([112]). The training dataset contains the object images in a clean back-

ground taken from different viewpoints and labeled images of the same objects taken by

a robot in an indoor environment. During testing, we use a probability threshold of 0.3 to

avoid false detections.

Each detected object bounding box is segmented using the organized point cloud seg-

mentation [129]. The segmented object is then matched to the 3D template of the detected

object class to estimate its pose. We extract PFHRGB features [107] in the source (ob-

ject segment) and target (object model) point clouds and register the two point clouds in a

Sample Consensus Initial Alignment framework [106]. If we have at least 12 inlier corre-

spondences, GICP (generalized iterative closest point [110] is performed to further refine

the registration and the final transformation is used as the object pose estimate. If less

than 12 inlier correspondences are found, the detection is considered to be a false positive

and the corresponding measurement is discarded. In hindsight, this approach verifies the

detection both semantically and geometrically.

Data Association. If object pose estimation is successful, it is data-associated with

other instances already present in the map by finding the object landmark having the same

category label within 2σ distance of the newly detected object. If there are multiple objects

64

with the same label within that distance, the newly detected object is matched to the nearest

object instance. If there exists no object having the same label, a new object landmark is

created.

Before the first rendezvous event, each robot performs standard single-robot SLAM

using OmniMapper [127]. Both wheel odometry and relative pose measurements to the

observed objects are fed to the SLAM back-end. A flowchart of the approach is given in

Fig. 35.

Robot Communication. During a rendezvous between robots α and β, robot α com-

municates the category labels (class) and poses (in robot α’s frame) of all the detected

objects to robot β. We assume that the initial pose of each robot is known to all the robots,

hence, given the initial pose of robot α, robot β is able to transform the communicated ob-

ject poses from robot α’s frame to its own frame.2 For each object in the list communicated

by robot α, robot β finds the nearest object in its map, having the same category label and

within 2σ distance. If such an object exists, it is added to the list of shared objects: this

is the set of objects seen by both robots. The list of shared objects contains pairs (oαk ,o
β
l)

and informs the robots that the poses oαk and oβl correspond to the same physical object,

observed by the two robots. For this reason, in the optimization we enforce the relative

pose between oαk and oβl to be zero.

We remark that, while before the first rendezvous the robots α and β have different

reference frames, the object-object factors enforce both robots to have a single shared ref-

erence frame, facilitating future data association.

Next we show the experimental evaluation which includes realistic Gazebo simulations

and field experiments in a military test facility.

2The knowledge of the initial pose is only used to facilitate data association but it is not actually used
during pose graph optimization. We believe that this assumption can be easily relaxed but for space reasons
we leave this task to future work.

65

4.4 Experiments

We evaluate our approach in large scale simulations (Section 4.4.1) and field tests (Section

4.4.2). The results demonstrate that the proposed approach is accurate, scalable, robust to

noise, and requires less memory and communication bandwidth.

4.4.1 Simulation Results: Distributed Object based SLAM

In this section we characterize the performance of the DGS algorithms associated with our

object-based model in a simulated environment. We test the resulting multi robot object-

based SLAM approach in terms of scalability in the number of robots and sensitivity to

noise.

Simulation setup and performance metrics. We consider two scenarios, the 25

Chairs and the House, which we simulated in Gazebo. In the 25 Chairs scenario,

we placed 25 chairs as objects on a grid, with each chair placed at a random angle. In the

House scenario, we placed furniture as objects in order to simulate a living room environ-

ment. Fig. 36 shows the two scenarios. Unless specified otherwise, we generate measure-

ment noise from a zero-mean Gaussian distribution with standard deviation σR = 5◦ for

the rotations and σt = 0.2m for the translations. Six robots are used by default. Results are

averaged over 10 Monte Carlo runs.

We use the absolute translation error (ATE*) and absolute rotation error (ARE*) of

the robot and landmark poses with respect to the centralized estimate as error metric. These

two metrics are formally defined below.

Absolute Translation Error (ATE*). Similar to the formulation by Sturm et al. [115], the

average translation error measures the absolute distance between the trajectory and object

poses estimated by our approach versus the centralized GN method. The ATE* is defined

as:

ATE∗ =

(
1∑

α∈Ω nα

∑
α∈Ω

nα∑
i=1

‖tαi − t∗αi‖
2

) 1
2

(26)

where tαi is the position estimate for robot α at time i, t∗αi is the corresponding estimate

66

25 Chairs Scene

House Scene

Figure 36: Multi robot object-based SLAM in Gazebo: the 25 Chairs and House
scenarios simulated in Gazebo.

from GN, and nα is the number of poses in the trajectory of α. A similar definition holds

for the object positions.

Absolute Rotation Error (ARE*). The average rotation error is computed by evaluat-

ing the angular mismatch between the (trajectory and objects) rotations produced by the

proposed approach versus a centralized GN method:

ARE∗ =

(
1∑

α∈Ω nα

∑
α∈Ω

nα∑
i=1

‖Log
(
(R∗αi)

TRαi

)
‖2

) 1
2

(27)

where Rαi is the rotation estimate for robot α at time i, R∗αi is the corresponding estimate

from GN. A similar definition holds for the object rotations.

Accuracy in the number of robots. Fig. 37 compares the object locations and tra-

jectories estimated using multi-robot mapping and centralized mapping for the two sce-

narios. Videos showing the map building for the two scenarios are available at: https:

//youtu.be/nXJamypPvVY and https://youtu.be/nYm2sSHuGjo.

Table 4 reports the number of iterations and our accuracy metrics (cost, ATE*, ARE*)

for increasing number of robots. The table confirms that the distributed approach is nearly

67

Centralized Distributed

Figure 37: Shows the trajectories of the six robots and object locations (shows as dots)
estimated using centralized mapping and multi-robot mapping for 25 Chairs (top) and
House scenario (bottom).

Table 4: Number of iterations, cost, ATE* and ARE* of our approach compared to the
centralized Gauss-Newton method for increasing number of robots. ATE* and ARE* are
measured using η = 10−1 as stopping condition. Measurement noise is generated from a
Gaussian distribution with standard deviation σR = 5◦ for the rotations and σt = 0.2m for
the translations. Results are averaged over 10 Monte Carlo runs.

#Robots
Distributed Gauss-Seidel Cent. ATE* (m) ARE* (deg)
η=10−1 η=10−2 GN

Poses Lmrks. Poses Lmrks.
#Iter Cost #Iter Cost Cost

2 5.0 56.1 9.0 56.0 54.7 1.5e-03 8.0e-04 2.1e-01 2.8e-01
4 5.0 118.0 8.0 117.9 113.8 9.7e-04 7.5e-04 2.0e-01 2.8e-01
6 5.0 166.6 7.0 166.5 160.9 3.1e-03 2.1e-03 3.3e-01 4.0e-01

as accurate as the centralized Gauss-Newton method and the number of iterations does not

increase with increasing number of robots, making our approach scalable to large teams.

Usually, few tens of iterations suffice to reach an accurate estimate. Note that even when

the cost of the DGS method is slightly higher than GN, the actual mismatch in the pose

68

Table 5: Number of iterations, cost, ATE* and ARE* of our approach compared to a cen-
tralized Gauss-Newton method for increasing measurement noise in 25 Chairs scenario
with 6 robots. ATE* and ARE* are measured using η=10−1 as stopping condition.

Measurement Distributed Gauss-Seidel Cent. ATE* (m) ARE* (deg)
noise η=10−1 η=10−2 GN

Poses Lmrks. Poses Lmrks.
σr(
◦) σt(m) #Iter Cost #Iter Cost Cost

1 0.05 5.0 12.7 6.0 12.7 12.5 1.8e-04 1.3e-04 7.5e-02 9.0e-02
5 0.1 5.0 166.6 7.0 166.5 160.9 3.1e-03 2.1e-03 3.3e-01 4.0e-01

10 0.2 5.0 666.2 8.0 665.9 643.4 1.3e-02 8.8e-03 6.7e-01 8.1e-01
15 0.3 6.0 1498.3 10.0 1497.8 1447.2 3.0e-02 2.1e-02 1.0e+00 1.2e+00

Figure 38: Objects from BigBird dataset used in Field Experiments

estimates is negligible (in the order of millimeters for positions and less than a degree for

rotations).

Sensitivity to measurement noise. We further test the accuracy of our approach by

evaluating the number of iterations, the cost, the ATE* and ARE* for increasing levels

of noise in 25 Chairs scenario with 6 robots. Table 5 shows that our approach is able

to replicate the accuracy of the centralized Gauss-Newton method, regardless of the noise

level.

4.4.2 Field Experiments: Distributed Object based SLAM

We tested our approach on field data collected by two Jackal robots (Fig. 39) moving in

a military training facility. We scattered the environment with a set of objects from the

BigBird dataset [112], shown in Fig. 38. Each robot is equipped with an Asus Xtion sensor

69

Figure 39: (Left) Clearpath Jackal robot used for the field tests: platform and sensor
layout; (right) snapshot of the test facility and the Jackal robots.

Figure 40: Shows YOLO object detection snapshots in three difference scenes, (l to r)
stadium, house, UW scene 2.

and uses wheel odometry to measure its ego-motion.

We evaluated our approach in two different scenarios, the stadium and the house.

We did two runs inside the stadium (Stadium-1 & Stadium-2) and one run in the

house with objects randomly spread along the robot trajectories. Stadium scenario

datasets were collected in an indoor basketball stadium with the robot trajectories bounded

in a roughly rectangular area. House scenario dataset was collected around the living room

and kitchen area of a house.

Object Detection. We used 12 objects from the BigBird dataset in all three runs. The

two-stage process of object detection (semantic verification) followed by pose estimation

(geometric verification) ensured that we do not add false positive detections. Our current

distributed optimization technique (DGS) is not robust to outliers. The detection thresholds

can be further relaxed when using robust pose graph optimization techniques.

In the first run (Stadium-1), 6 objects were added to the map out of 12 objects kept in

the environment. Similarly 5 objects were detected in the other two runs. Fig. 40 shows the

bounding box snapshots of the detected object in three different scenes. Videos showing

YOLO object detection results on UW Scenes2 dataset [75] is available at https://

70

youtu.be/urZiIJK2IYk and https://youtu.be/-F6JpVmOrc0.

Table 6: Memory and communication requirements for our object based approach (Obj) as
compared to Point cloud based approach (PCD) on field data.

Scenario
Avg. Per-Robot Avg. Comm.

Memory Req. (MB) Bandwidth Req. (MB)
PCD Obj PCD Obj

Stadium-1 1.2e+03 1.9e+00 1.9e+01 1.5e-05
Stadium-2 1.4e+03 1.9e+00 1.4e+01 1.1e-05

House 2.1e+03 1.9e+00 1.6e+01 1.3e-05

Memory Requirements. Table 6 compares the average memory requirement per robot

to store a dense point cloud map (PCD) with respect to storing a object-based map (Obj).

The table also compares the average communication requirements in the case of dense point

cloud map and object-based map.

Per-robot memory requirement in the case of dense point cloud is computed as nfKC

where nf is the number of frames,K is the number of points per frame andC is the memory

required to store each point. In the case of object level map, it is computed as noPC where

no is the number of object models and P is the average number of points in each object

model. Table 6 shows that, as expected, the per-robot memory requirement is orders of

magnitude smaller with our object-based map as compared to point-cloud-based maps.

When using point clouds, the robots are required to send at least one frame at every

rendezvous to estimate their relative pose. So the average communication for dense point

cloud map is computed as ncKC where nc is the number of rendezvous, K is the number

of points per frame and C is the memory required to send each point. Communication

in the case of our object-based map requires sending object category and object pose; a

upper bound can be computed as noL where no is the number of objects and L is the

memory required to store category label and pose of an object. Table 6 confirms that our

approach provides a remarkable advantage in terms of communication burden as it requires

transmitting 6 orders of magnitude less than a point-cloud-based approach.

71

Centralized Distributed Centralized Distributed Centralized Distributed

Stadium-1 Stadium-2 House

Figure 41: Field tests: estimated trajectories for the our algorithm (distributed Gauss-
Seidel) and for the centralized Gauss-Newton method [35]. Trajectories of the two robots
are shown in red and blue.

Estimated Trajectory Approximate trajectory

Figure 42: Lab test: estimated trajectory for our algorithm (distributed Gauss-Seidel) and
approximate trajectory marked on the blue-print. Trajectories of the two robots are shown
in red and green. Object landmarks are shown in blue.

Accuracy. Fig. 41 shows the trajectories of the two robots in three runs. The figure

compares our approach and the corresponding centralized estimate. Fig. 42 shows the

trajectories of the two robots for a run in Georgia Tech IRIM lab. Quantitative results

are given in Table 6 and Table 7, which reports the cost attained by the our approach,

the number of iterations, ATE*, ARE* as compared to the centralized approach. The table

confirms that the distributed approach is nearly as accurate as the centralized Gauss-Newton

method and requires very few iterations to compute a good estimate.

72

Table 7: Number of iterations, cost, ATE* and ARE* of our approach as compared to
centralized Gauss-Newton method for Field data.

Scenario
Initial Distributed Gauss-Seidel Centralized ATE (m) ARE (deg)

ηr=ηp=10−1 ηr=ηp=10−2 GN
Poses Lmrks. Poses Lmrks.

Cost #Iter Cost #Iter Cost Cost

Stadium-1 120.73 5.0 1.1e-09 5.0 1.1e-09 1.6e-10 1.9e-10 1.9e-10 1.4e-03 1.2e-04
Stadium-2 310.24 5.0 4.5e-12 8.0 4.4e-12 3.5e-13 2.1e-03 2.2e-03 1.2e-02 1.4e-02

House 43.59 5.0 1.1e-03 6.0 1.0e-03 8.4e-04 4.4e-02 6.2e-02 4.3e-01 4.9e-01

4.5 Main Experimental Insights

In the previous chapter (Chap 3), we proposed a distributed Gauss-Seidel method, which

reduces the communication burden of distributed SLAM from quadratic to linear in the

number of locations co-observed by the robots. However, the work [23], as most related

works, requires the exchange of point clouds among the robots, to estimate relative poses

during rendezvous. This communication burden is unnecessary, as it leads to exchanging

a large amount of uninformative points, and quickly becomes impractical in presence of

bandwidth constraints.

In this chapter we address this issue by using an object-based representation. Objects

provide a suitable abstraction level, and provide a natural tool to compress large point

clouds into a semantically meaningful compact representation. In our system, the robots

perform local computation to detect objects and compute their pose. We leverage recent

progress in object detection using deep learning: this allows us to reliably detect objects in

RGB images at high frame rate. Then, during rendezvous the robots only need to exchange

the observed object instances and the measured object poses. This allows the robots to

greatly minimize the amount of data exchanged with the teammates.

Experimental evidence shows that our approach leads to a remarkable reduction in the

memory footprint (3 orders of magnitude less) and in the communication requirements

(6 orders of magnitude less communication), enabling operation in severely bandwidth-

constrained scenarios. The experiments also show that our object-based distributed SLAM

73

approach is as accurate as a standard centralized solver and is able to tolerate a large amount

of measurement noise.

4.6 Conclusions

We proposed a Distributed Object-based SLAM approach that uses object landmarks in a

multi robot mapping framework. We showed that this approach (i) reduces the memory

requirement and information exchange among robots, (ii) is as accurate as the centralized

estimate, (iii) scales well to large number of robots and (iv) is resistant to noise.

However it can be challenging to store a model of all the object instances due to large

intra-class variation. Searching through all the object models for object pose estimation

can be computationally demanding. It won’t generalize to new unseen instances of the

same object category as well. Therefore, in the next two chapters, we extend this work

to the case where object models are previously unknown and are modeled jointly with

Distributed Object based SLAM.

74

CHAPTER V

OBJECT BASED SLAM WITH JOINT OBJECT MODELING AND

MAPPING

5.1 Introduction

Service robots operating in human environments require a variety of perceptual capabilities,

including localization, mapping, object recognition, and modeling. Each environment may

have a unique set of objects, and a set of object models may not be available a-priori. Even

if the object models are available, it can be challenging to store a model of all the object

instances due to large intra-class variation.

However, recently the performance of category level object detectors have improved

considerably, providing real-time bounding box object detections for a large number of ob-

ject categories commonly found in indoor environments [100]. Simultaneous Localization

and Mapping (SLAM) is also required for service robot to be able to map new environments

and navigate within them.

In this chapter, we leverage the improvement in object detectors and propose an ap-

proach to online object modeling, and show how to combine this with a SLAM system.

The benefits are twofold: an object model database is produced in addition to the map,

and the modeled objects are used as landmarks for SLAM, producing improved mapping

results.

Related Work. Localization and navigation are two basic problems in the area of mo-

bile robotics. Map based navigation is a commonly used method to navigate from one point

to another, where maps are commonly obtained using simultaneous localization and map-

ping (SLAM). Durrant-Whyte and Bailey provide a survey of the SLAM literature and the

state of art in [38, 10]. Recent SLAM systems use graph optimization technique to jointly

75

estimate the entire robot trajectory and landmarks using sparse optimization techniques

[42, 34, 123].

However, traditional feature based maps are composed of low level primitives like

points and lines which are mostly used to model space based on its geometric shape [32].

These maps lack the semantic information necessary for performing wider range of tasks,

which may require higher level representation such as object models. Dense metric maps

also have a lot of redundant information like 3D points in floor and uninformative textured

surfaces which do not facilitate robot localization. In addition, dense maps built using

depth cameras can be memory intensive as well.

In contrast, maps augmented with objects confer a number of advantages for mapping

the environment. Features, e.g., objects and planes, can be represented using a compact

representation and provide a richer description of the environment. It is simpler to include

prior constraints at the object level than at the lower feature level. The semantic information

available for an object provides better cues for data association as compared to a 3D point

cloud. An object would not be represented by a 3D point but rather by a 3D point cloud.

Joint optimization over all the camera poses and objects is computationally cheaper than

the joint optimization over all the 3D points and cameras since, as there are many fewer

objects compared to the number of 3D points in a map.

Hence, semantic mapping has gathered a lot of interest from the robotics community.

Kuipers [72] modeled the environment as a spatial semantic hierarchy, where each level

expresses states of partial knowledge corresponding to different level of representations.

Ranganathan and Dellaert [98] presented a 3D generative model for representing places us-

ing objects. The object models are learned in a supervised manner. Nuchter and Hertzberg

[92] described an approach to semantic mapping by creating a 3D point cloud map of the

environment and labeling points using the different semantic categories like floor, wall,

ceiling or door. Pronobis et al. [97] proposed a complete and efficient representation of

indoor spaces including semantic information. They use a multi-layered semantic mapping

76

Figure 43: Snapshot of the process at one instant. The robot trajectory is shown in red.
Green lines add constraints between the modeled object landmarks and the robot poses
they are seen from. Light background shows the aggregated map cloud generated using the
current SLAM solution.

77

representation to combine information about the existence of objects in the environment

with knowledge about the topology and semantic properties of space such as room size,

shape and general appearance.

Some recent semantic mapping work has focused on using higher level landmarks such

as objects. Rogers et al. recognize door signs and read their text labels such as room

numbers, which are used as landmarks in SLAM [101]. Trevor et al. used planar surfaces

corresponding to walls and tables as landmarks in a mapping system [127]. More recently,

the SLAM++ system proposed by Salas-Moreno et al. [108] trained domain specific object

detectors corresponding to repeated objects like tables and chairs. The learned detectors

are integrated inside the SLAM framework to recognize and track those objects resulting

in semantic map. Similarly Kim et al. [67] uses learned object models to reconstruct dense

3D models from single scan of the indoor scene.

Object discovery and scene understanding are also related to our approach. Karpathy

et al. [62] decompose a scene into candidate segments and ranks them according to their

objectness properties. Collet et al. used domain knowledge in the form of metadata and

use it as constraints to generate object candidates [27]. Using RGBD sensor, Koppula et

al. [69] used graphical models capturing various image feature and contextual relationship

to semantically label the point cloud with object classes and used that on a mobile robot

for finding objects in a large cluttered room. Hoiem and Savarese [54] did a survey of

additional recent work in the area of 3D scene understanding and 3D object recognition.

Contribution. All of the above approaches either learn object models in advance, or

discover them in a batch process after the robot has scanned the environment and generated

a 3D model or a video sequence. In contrast, our main contribution is to integrate object

modeling and mapping in a SLAM framework, following an online learning paradigm.

Considering the advantages of object augmented maps, we too use objects as landmarks in

addition to other features. We compare the performance of our algorithm with the state of

art RGB-D mapping approaches and show that our approach is nearly as accurate as the

78

state of art RGB-D mapping approach while using less memory than those approaches.

Section 5.2 introduces the additional mathematical notation and formalizes the prob-

lem of Object-SLAM with joint object modeling and mapping. Section 5.3 presents the

implementation details of our system.

Figure 44: Factor graph representation of Object based SLAM with Joing Object Mod-
eling and Mapping. xi−1,xi,xi+1 denotes the trajectory poses assumed by a robot at time
i − 1,i,i + 1 respectively. The pose of the kth object as estimated by the robot is denoted
with ok. Green dots shows object-object loop closure factor whereas orange and purple
dots show object-pose factors and odometry factors respectively.

5.2 Problem Formulation: Object-SLAM with Joint Object Modeling
and Mapping

We consider a system, where a robot estimates its own trajectory using local measurements

and also estimates the pose of a set of objects in the environment. We model the trajectory

as a finite set of poses; the trajectory of robot α is x = [x1,x2, . . .]. In addition, we denote

with ok ∈ SE(3) the pose of the kth object as estimated by the same robot.

79

Measurements. We assume that a robot acquires three types of relative pose measure-

ments: odometry measurement, object-pose measurement and object-object loop closure

measurements. The odometry measurements consist of the fused robot motion measure-

ments, which constrain consecutive robot poses (e.g., xi and xi+1 in Fig. 44). The object-

pose measurement constrains robot poses with the corresponding visible object landmarks

(e.g., xi and ok in Fig. 44). The object-object loop closure measurement relate the object

landmarks corresponding to the same physical object but added twice due to the odometry

drift. We use sparse feature matching followed by ICP based refinement to estimate the

object-object loop closure measurement.

The odometry, object-pose and object-object measurements follows the same measure-

ment model of eq. (1). Specifically, for the object-pose measurements, if a robot at time

i and at pose xi observes an object at pose ok, then the corresponding measurement z̄xiok

measures the relative pose between xi and ok. Similarly we denote the loop closure mea-

surement between object poses ok and ol as z̄okol .

In the following, we denote with MI the set of odometry measurements for a robot.

Similarly the set of object-pose measurements for a robot is denoted as MO. The set of

object-object loop closure measurements is denoted with MS . The set of all available

measurements is thenM =MI ∪MO ∪MS .

ML trajectory and objects estimation. Let us collect the trajectories and object poses

in a (to-be-estimated) set of robot poses x = [x1,x2, . . .] and set of object poses o =

[o1,o2, . . .]. The ML estimate for x and o is defined as the maximum of the measurement

likelihood:

x?,o? = arg max
x,o

∏
(xi,xi+1)∈MI

L(z̄xixi+1
| x)︸ ︷︷ ︸

odometry factors

∏
(xi,ok)∈MO

L(z̄xiok | x,o)︸ ︷︷ ︸
object-measurement factors∏

(oi,oj)∈MS

L(z̄oioj | x,o)︸ ︷︷ ︸
object-object loop closure factors

(28)

where we used the same assumptions on measurement noise as in Section 3.2. Defining

80

X = x ∪ o, we rewrite eq. (28) as:

X ? = arg max
X

∏
(αi,βj)∈M

L(z̄αiβj | X) (29)

The given optimization problem is optimized using iSAM2 [61].

The next section presents the implementation details of our Object-SLAM with joint

object modeling and mapping system.

5.3 Implementation Details: Object based SLAM with Joint Object Mod-
eling and Mapping

Ego-Motion Estimation. As the robot moves around in an indoor environment, we contin-

uously map the environment using the SLAM system presented by Trevor et al. [127, 128].

A robot collects 3D scans using Velodyne 32E, RGB-D scans using an Orbbec Astra sen-

sor, and inertial measurements using IMU and odometry measurements using wheel sen-

sors. Fig. 22 shows the sensor layout on a Jackal robot. Relative pose estimates from all the

sensors are fused together using OmniMapper[128] to estimate robot’s ego-motion1. Fig. 3

shows the overview of the egomotion estimation pipeline.

Specifically, 3D scans from the Veldoyne 32E are used to compute relative pose with

respect to the previous scan using GICP (generalized iterative closest point [110]). Inertial

measurements from IMU are fused with Wheel Odometry measurements to generate IMU

corrected odometry estimates. Relative pose estimates using RGB-D scans are computed

using ORB-SLAM [85]. Relative pose estimates are then fused using OmniMapper.

Per Frame Segmentation. We assume that in indoor environments, objects are sup-

ported by homogeneous planes such as walls, floors, table tops. We consider all the homo-

geneous planes as planar landmarks and the remaining non-planar regions as the regions

corresponding to potential objects of interest. To segment such scenes, we employ the or-

ganized connected component segmentation approach of Trevor et. al [129]. Given a point

1https://github.com/CognitiveRobotics/omnimapper

81

Convolutional
Network based

Object Detection

RGBD Image

Segment
Detected Object

if not associated

Add a new Object
Instance to the Map SLAM

Data Associate with
nearest segment in 3D

Fuse Segment with
the Current Model

Use the Modeled
Object as
Landmark

if associated

Add
factors

If classification
accuracy is greater
than a threshold

Object-Object loop
closure thread If a match is

found, add the
loop closure
factor

Add
object-pose
factors

Figure 45: Flowchart of Object based SLAM with Joint Object Modeling and Mapping

cloud, surface normals are computed for each point in each frame using the technique of

Holzer et. al[55]. Using these normals, connected component corresponding to surfaces

with smoothly varying normals are found. Least squares plane fit is used to recover planar

segments having more than minimum number of inliers and low curvature.

Points corresponding to non-planar regions are further segmented using different seg-

mentation techniques. We experiment with connected component segmentation [129] or

graph based segmentation [40] to segment out objects. We use connected component seg-

mentation considering its better runtime performance and comparable accuracy to graph

based segmentation. The remaining clustered regions are further filtered to exclude clus-

ters that are either too small or too large, to exclude noise and large furniture. In this work,

82

we consider only clusters that include at least 1000 points, and have a bounding box volume

of less than 1 cubic meter. These values were determined empirically.

Object Detection. Each RGB frame (from RGBD) is passed to the YOLO v2 object

detector [99, 100], which detects objects at 45 frames per second. We fine-tune the YOLO

detector on a subset of objects from the BigBird dataset ([112]). The training dataset con-

tains the object images in a clean background taken from different viewpoints and labeled

images of the same objects taken by a robot in an indoor environment. During testing, we

use a probability threshold of 0.3 to avoid false detections.

Object Modeling. The non-planar clusters from per-frame segmentation which are in-

side the detection bounding boxes are then associated with other modeled objects visible

in the co-visible keyframes [85]. To data associate the current object segment with the

other objects in the covisible keyframes, we use ICP-like matching score as proposed by

Sunderhauf et al. [119]. Firstly, we find the candidate object landmarks by sorting the

modeled objects in an ascending order of centroid distance from the object segment cen-

troid. Then we perform a nearest neighbor search between the 3D points in the candidate

object landmark and in the detection, and calculate the Euclidean distance between the as-

sociated point pairs. A detection is associated to an existing landmark if at least 50% of

its 3D points have a distance of 2 cm or less. If none of the covisible object landmarks

match, and distance to the nearest landmark bounding box is greater than 5 cm, then a new

object landmark is added. Otherwise the new object segment is associated to the matched

object landmark. If the IoU of the new object segment bounding box with the nearest object

landmark is greater than zero but less than 50% of its 3D points have a distance of 2 cm

or less with any of the candidate object landmarks, then the new object segment is neither

associated nor added as a new landmark and the segment is thrown away.

Object Representation. Each object model is represented semantically using the per-

class probabilities provided by the YOLO v2 detector. Each new detection consists of a

vector of per-class probabilities. When a new detection is associated with one of the object

83

landmarks, the per-class probabilities of the object landmark is updated using running aver-

age technique. If the object landmark is visible from n poses, S is the current accumulated

per-class probabilities and s is the new detection per-class probabilities, then the updated

probabilities S and n is given as:

S =
n× S + s

n+ 1
, n = n+ 1 (30)

If the given object landmark is visible from more than 5 frames and the largest class

probability of the object landmark is greater than 0.5, then we add the object landmark into

the SLAM factor graph. The category of that object landmark is set to the object class

having the largest class probability.

The object landmark ok is initialized at the pose of the first frame xk in which it is

visible from. The corresponding object pose measurement for the nth frame, z̄xnok is esti-

mated using ICP initialized using the transformation between the nth frame and the first

frame xk in which the object is visible from. The factor corresponding to the object pose

measurement is then added to the factor graph.

If an object is added to the factor graph, we pad the object bounding box by 20 cm

in all direction and included all the points in this extended bounding box. The additional

padded points serve the purpose of context which helps when estimating the transformation

between two object landmarks in the case of symmetrical objects and it also helps in disam-

biguating the same objects in different locations in the environment (eg. chair of the same

model placed in different areas). However the value of padding is determined empirically

and can be further explored in future research. The points in extended bounding box are

converted to TDF representation for establishing correspondence between different object

landmarks using 3DMatch [139].

Object-Object Loop Closure. In a parallel thread, each object landmark which is

added to the factor graph is matched to all the other landmarks having the same object cat-

egory name. Correspondences are estimated using 3DMatch [139]. The estimated relative

84

pose given the sparse correspondences is then further refined using ICP. If the average eu-

clidean distance of the transformed points in one object is less than 10−3 to the points in the

matching object, we consider the matching to be successful. The resulting transformation

is then used as the object-object loop closure measurement z̄okol . The corresponding factor

is added to the factor graph and optimized using iSAM2 [61]. Fig. 45 shows the complete

flowchart.

Next we show the experimental evaluation which includes tests on standard and large-

scale datasets.

5.4 Experiments

We evaluate our approach on small-scale standard SLAM datasets (UW RGB-D Scenes

v2[74] and TUM[115]). We also evaluate our approach on large scale robot datasets cap-

tured using Jackal robot in different indoor environments. We compare the performance of

our approach against other state of art RGB-D mapping approaches like ORB-SLAM2[85],

ElasticFusion[138] and Kintinuous[137].

We use standard SLAM metrics like absolute trajectory error (ATE) and relative pose

error (RPE) proposed by Sturm et al.[115] to compare the accuracy of the estimated tra-

jectory. ATE directly measures the difference between points of the true and the estimated

trajectory. ATE is evaluated using the root mean squared error over all time indices of the

translation different between the estimated and groundtruth pose. RPE measures the local

accuracy or the drift of the estimated trajectory over a fixed time interval.

We also compare the memory requirements of our approach as compared to ORB-

SLAM2[85]. As compared to other RGB-D mapping approaches, ORB-SLAM2 maintains

a sparse map of the environment and therefore requires the least memory when compared

to other RGB-D mapping approaches. ElasticFusion maintains a surfel based map of the

environment which is limited to a room sized environment since its complexity scales with

the number of surfels in the map. Kintinuous maintains the RGB-D frames for the purpose

85

of loop closure and therefore does not scale well with time.

Table 8: ATE (in meters) comparison of Object-SLAM with joint object modeling and map-
ping (our approach), ORB-SLAM2, ElasticFusion and Kintinuous on UW RGB-D Scenes
v2 dataset.

Scene ID Object-SLAM ORB-SLAM2 ElasticFusion Kintinuous

1 0.009181 0.010568 0.015422 0.054868

2 0.008175 0.007374 0.010236 0.033052

3 0.005754 0.006336 0.015407 0.039809

4 0.008145 0.008141 0.019869 0.032991

5 0.028222 0.026408 0.039670 0.051828

6 0.024401 0.018720 0.024715 0.047619

7 0.011808 0.013378 0.035173 0.045526

8 0.017886 0.016270 0.037738 0.048659

9 0.010901 0.011902 0.007678 0.058484

10 0.009667 0.010983 0.005266 0.057244

11 0.013161 0.012608 0.009350 0.039200

12 0.008220 0.007880 0.008023 0.022030

13 0.006299 0.007455 0.006003 0.012381

14 0.018972 0.017364 0.009994 0.021740

5.4.1 UW RGB-D Scenes v2 dataset

We compare the performance of Object-SLAM with joint object modeling and mapping

with ORB-SLAM2, ElasticFusion and Kintinuous on all 14 scenes in UW RGB-D Scenes

v2 dataset. Setup. Since it is a handheld sequence, we use the local mapper in ORB-

SLAM2 for ego-motion estimation for Object-SLAM. For object detection, we fine-tune

the YOLO v2 detector on a subset of object classes (bowls, caps, cereal boxes, coffee

86

Table 9: RPE comparison of Object-SLAM with joint object modeling and mapping (our
approach), ORB-SLAM2, ElasticFusion and Kintinuous on UW RGB-D Scenes v2 dataset.

Scene ID Object-SLAM ORB-SLAM2 ElasticFusion Kintinuous

1 0.014328 0.015887 0.017999 0.113334

2 0.013608 0.012488 0.014283 0.077422

3 0.009940 0.009685 0.020132 0.095086

4 0.013148 0.013754 0.022681 0.084665

5 0.044958 0.040229 0.046880 0.117374

6 0.039250 0.031916 0.030698 0.116774

7 0.018957 0.020173 0.040176 0.096612

8 0.028336 0.025227 0.037073 0.116530

9 0.019602 0.020110 0.012689 0.110331

10 0.016941 0.018201 0.007244 0.122100

11 0.021976 0.020820 0.014971 0.088745

12 0.015514 0.015002 0.011368 0.079399

13 0.010886 0.012286 0.008649 0.033556

14 0.024059 0.021932 0.018983 0.055346

mugs, and soda cans) from UW RGB-D object dataset and UW RGB-D Scenes v1 dataset.

Results. Table 8 and 9 compare the ATE and RPE of Object-SLAM as compared to

other RGB-D mapping approaches. Since most of the sequences are captured in room sized

environment, there is no loop closure and therefore the accuracy of Object-SLAM is nearly

the same as the accuracy of ORB-SLAM2. ElasticFusion and Kintinuous perform worse

than ORB-SLAM2 on most of the sequences. Table 10 compares the memory footprint

87

Table 10: Memory footprint comparison of Object-SLAM with joint object modeling and
mapping (our approach) and ORB-SLAM2 on UW RGB-D Scenes v2 dataset.

Scene ID Object-SLAM ORB-SLAM2

1 7.6 MB 28 MB

2 6.6 MB 28 MB

3 8.8 MB 28 MB

4 14 MB 26 MB

5 7.4 MB 38 MB

6 8.4 MB 59 MB

7 11 MB 44 MB

8 12 MB 54 MB

9 5.0 MB 21 MB

10 7.0 MB 19 MB

11 5.2 MB 21 MB

12 7.1 MB 22 MB

13 5.2 MB 6.4 MB

14 9.7 MB 16 MB

requirement of Object-SLAM as compared to ORB-SLAM2. We can see that Object-

SLAM requires less memory than ORB-SLAM2 for all the sequences. Therefore for loopy

small sequences like UW RGB-D Scenes v2 dataset, we showed that Object-SLAM reduces

the memory requirement while maintaining the trajectory accuracy of the state of art RGB-

D mapping approaches. Figures 46, 47 and 48 provide the qualitative comparison of the

results produced by Object-SLAM, ORB-SLAM2 and ElasticFusion.

88

Object-SLAM ORB-SLAM2 ElasticFusion

Figure 46: Qualitative comparison of the performance of Object-SLAM with joint object
modeling and mapping (our approach), ORB-SLAM2 and ElasticFusion on UW RGB-
D Scenes Dataset v2, scenes 1-5. For Object-SLAM and ORB-SLAM2 the trajectory is
shown in blue color. For object SLAM, object bounding boxes are shown in green and
category labels shown in red. Transparent point cloud background is just shown for visual-
ization and is not used in the actual algorithm.89

Object-SLAM ORB-SLAM2 ElasticFusion

Figure 47: Qualitative comparison of the performance of Object-SLAM with joint object
modeling and mapping (our approach), ORB-SLAM2 and ElasticFusion on UW RGB-
D Scenes Dataset v2, scenes 6-12. For Object-SLAM and ORB-SLAM2 the trajectory
is shown in blue color. For object SLAM, object bounding boxes are shown in green
and category labels shown in red. Transparent point cloud background is just shown for
visualization and is not used in the actual algorithm.90

Object-SLAM ORB-SLAM2 ElasticFusion

Figure 48: Qualitative comparison of the performance of Object-SLAM with joint object
modeling and mapping (our approach), ORB-SLAM2 and ElasticFusion on UW RGB-
D Scenes Dataset v2, scenes 11-14. For Object-SLAM and ORB-SLAM2 the trajectory
is shown in blue color. For object SLAM, object bounding boxes are shown in green
and category labels shown in red. Transparent point cloud background is just shown for
visualization and is not used in the actual algorithm.

91

Table 11: ATE (in meters) comparison of Object-SLAM with joint object modeling and
mapping (our approach), ORB-SLAM2, ElasticFusion and Kintinuous on TUM RGB-D
dataset.

Object-SLAM ORB-SLAM2 ElasticFusion Kintinuous

fr1/desk 0.015048 0.016059 0.022808 0.070849

fr1/desk2 0.023610 0.019193 0.065344 0.071

fr1/room 0.116864 0.043273 0.226645 0.313867

fr2/desk 0.015463 0.008687 0.095495 0.196952

fr2/xyz 0.004151 0.003751 0.012830 0.029

fr3/office 0.012157 0.011722 0.018876 0.097613

Table 12: RPE comparison of Object-SLAM with joint object modeling and mapping (our
approach), ORB-SLAM2, ElasticFusion and Kintinuous on TUM RGB-D dataset.

Object-SLAM ORB-SLAM2 ElasticFusion Kintinuous

fr1/desk 0.022871 0.022918 0.040841 0.127574

fr1/desk2 0.043759 0.043759 0.106668 0.150

fr1/room 0.156864 0.156864 0.318108 0.415113

fr2/desk 0.035788 0.035788 0.148241 0.292563

fr2/xyz 0.010794 0.010794 0.021372 0.031

fr3/office 0.024367 0.024367 0.037320 0.166917

5.4.2 TUM RGB-D dataset

We compare the performance of Object-SLAM with joint object modeling and mapping

with ORB-SLAM2, ElasticFusion and Kintinuous on a subset of sequences in TUM RGB-

D dataset.

92

Table 13: Memory footprint comparison of Object-SLAM with joint object modeling and
mapping (our approach) and ORB-SLAM2 on TUM RGB-D dataset.

Object-SLAM ORB-SLAM2

fr1/desk 49 MB 12 MB

fr1/desk2 4 MB 27 MB

fr1/roo MB 41 MB 47 MB

fr2/desk 2.1 MB 20 MB

fr2/xyz 2 MB 15 MB

fr3/office 10 MB 67 MB

Setup. Similar to UW-RGBD dataset, we use the local mapper in ORB-SLAM2 for

ego-motion estimation for Object-SLAM. For object detection, instead of finetuning the

YOLO v2 detector, we use a pretrained COCO detector [80]. COCO detector is trained on

80 object classes commonly found in indoor and outdoor environments.

Results. Table 11 and 12 compares the ATE and RPE of Object-SLAM as compared

to other RGB-D mapping approaches. Similar to UW-RGBD dataset, since most of the

sequences are captured in room sized environment, there is no loop closure and therefore

the accuracy of Object-SLAM is nearly the same as the accuracy of ORB-SLAM2. Elastic-

Fusion and Kintinuous perform worse than ORB-SLAM2 on most of the sequences. Table

13 compares the memory requirement of Object-SLAM as compared to ORB-SLAM2. We

can see that Object-SLAM requires less memory than ORB-SLAM2 for most of the se-

quences except for fr1/desk since the scene is very cluttered and therefore lot of object

landmarks are added to the map.

5.4.3 Handheld Experiments

We also created some handheld sequences using Orbbec Astra RGB-D sensor in larger than

room sized environment in CPL and IRIM labs.

93

Table 14: ATE (in meters) and RPE comparison of Object-SLAM with joint object mod-
eling and mapping (our approach), Kintinuous and ORB-SLAM2 without loop closures
w.r.t ORB-SLAM2 with loop closures. We compare against ORB-SLAM2 output since we
don’t have groundtruth trajectory estimates.

Object-SLAM Kintinuous ORB-SLAM2 (no loop closure)

ATE RPE ATE RPE ATE RPE

Handheld IRIM 0.552987 0.7876 0.499105 1.0437 1.8364 2.2739

Handheld CPL 0.215320 0.49313 0.62345 0.8 1.127 1.224

Table 15: Memory requirement comparison of Object-SLAM with joint object model-
ing and mapping (our approach) and ORB-SLAM2 for Handheld datasets collected using
Orbbec Astra RGBD sensor in IRIM lab and CPL lab.

Object-SLAM ORB-SLAM2

Handheld IRIM 41 MB 596 MB

Handheld CPL 38 MB 737 MB

Setup. Similar to standard benchmark datasets, we use the local mapper in ORB-

SLAM2 for ego-motion estimation. For object detection, we use the pretrained COCO

detector as used in TUM RGB-D dataset.

Results. Figure 49 and 50 provide the qualitative comparison of the results produced

by Object-SLAM and ORB-SLAM2. Table 14 compares the ATE and RPE of estimates

computed by our approach, Kintinuous and ORB-SLAM2 (w/o loop closure) with respect

to the estimates computed by ORB-SLAM2. We compare against ORB-SLAM2 output

since we don’t have groundtruth trajectory estimates. ORB-SLAM2 (w/o loop closure)

acts as a baseline and shows that using objects as landmarks during loop closure improves

the trajectory estimate (better ATE, RPE as compared to ORB-SLAM2 w/o loop closure).

The estimates returned by Kintinous for Handheld IRIM and CPL dataset are closer to

Object-SLAM’s estimate as well given that the ATE/RPE with respect to ORB-SLAM2

are similar. This shows that our approach performs similar to other state of art RGB-D

94

mapping approaches.

Table 15 compares the memory requirement of Object-SLAM as compared to ORB-

SLAM2. We can see that Object-SLAM requires less memory than ORB-SLAM2 for both

the sequences.

95

Object-SLAM with Joint Object Modeling and Mapping

ORB-SLAM2

Figure 49: Qualitative comparison of the performance of Object-SLAM with joint ob-
ject modeling and mapping (object-object loop closure, our approach) and ORB-SLAM2
(keyframe based loop-closure) method on handheld IRIM dataset. (Top) Shows the mod-
eled objects and trajectory estimated by our approach. Zoom in along the trajectory in the
electronic version to see the objects. (Bottom) Shows the aggregated point cloud and tra-
jectory estimated by ORB-SLAM2 method. For object SLAM, object bounding boxes are
shown in green and category labels shown in red.

96

Object-SLAM with Joint Object Modeling and Mapping

ORB-SLAM2

Figure 50: Qualitative comparison of the performance of Object-SLAM with joint ob-
ject modeling and mapping (object-object loop closure, our approach) and ORB-SLAM2
(keyframe based loop-closure) method on handheld CPL dataset. (Top) Shows the modeled
objects and trajectory estimated by our approach. Zoom in along the trajectory in the elec-
tronic version to see the objects. (Bottom) Shows the trajectory estimated by ORB-SLAM2
method. For object SLAM, object bounding boxes are shown in green and category labels
shown in red.

97

5.4.4 Robot Experiments

In addition to the handheld datasets, we created new large scale datasets with a team of

Jackal robots in different indoor scenarios.

Setup. In all the scenarios, the objects from the BigBird dataset [112] were randomly

spread along the robot trajectory. We fuse the estimates from RGB-D sensor, laser scanner,

IMU and wheel odometry for ego motion estimation as explained in Section 5.3. For object

detection, we finetune the YOLO v2 detector on a subset of objects from BigBird dataset.

We compare the performance of Object-SLAM with joint object modeling and mapping

with ORB-SLAM2. In both the case, we use the same algorithm for ego-motion estima-

tion. However for loop closure, in the case of object-slam we use the modeled objects

and estimate object-object loop closures, whereas in the case of ORB-SLAM2 we use the

keyframes to estimate the loop closure.

The experiments were performed in the IRIM lab, CPL lab and in the 3rd floor of Klaus

building at Georgia Tech. We also collected data inside a building at a military facility.

Table 16: ATE-O (in meters) and RPE-O comparison of Object-SLAM with joint object
modeling and mapping (our approach) w.r.t ORB-SLAM2. We compare against ORB-
SLAM2 output since we don’t have groundtruth trajectory estimates.

ATE-O RPE-O

IRIM 0.000004 2.40e-06

CPL 0.000004 1.5e-06

Klaus 0.28 0.37

Military Facility 0.000451 0.0002

Results. Figures 51, 52, 53 and 54 show the qualitative comparison of the trajectories

and point cloud estimated by Object-SLAM with joint object modeling and mapping as

compared to ORB-SLAM2 for IRIM, CPL, Klaus and Military facility dataset respectively.

Since we don’t have groundtruth trajectories for these experiments, we use ORB-SLAM’s

98

Table 17: Memory requirement comparison of Object-SLAM with joint object modeling
and mapping (our approach) and ORB-SLAM2 for Robot datasets collected with Jackal
robot in IRIM lab, CPL lab, Klaus building and a military training facility.

Object-SLAM ORB-SLAM2

IRIM 5.5 MB 524 MB

CPL 14 MB 1005 MB

Klaus 14 MB 739 MB

Military Facility 38 MB 184 MB

estimate as a groundtruth to measure the accuracy of the estimate given by our approach.

We define ATE with respect to ORB-SLAM2 as ATE-O and RPE with respect to ORB-

SLAM2 as RPE-O. Table 16 shows ATE-O and RPE-O on the four datasets. We can see

that the estimate returned by our approach is close to the estimate returned by the state of art

RGB-D mapping approach (ORB-SLAM2). Table 17 compares the memory requirement

of Object-SLAM as compared to ORB-SLAM2. We can see that Object-SLAM requires

less memory than ORB-SLAM2 for all the sequences. We see that the memory savings for

large scale exploratory scenes is even higher as compared to standard benchmark datasets

like TUM and UW RGB-D Scenes v2. This shows that our approach scales better with the

size of the map as compared to state of art RGB-D mapping approaches.

99

Object-SLAM with Joint Object Modeling and Mapping

ORB-SLAM2

Figure 51: Qualitative comparison of the performance of Object-SLAM with joint ob-
ject modeling and mapping (object-object loop closure, our approach) and ORB-SLAM2
(keyframe based loop-closure) method on IRIM dataset. (Top) Shows the aggregated point
cloud and trajectory estimated by our approach. Zoom in along the trajectory in the elec-
tronic version to see the objects. (Bottom) Shows the aggregated point cloud and trajectory
estimated by ORB-SLAM2 method. For object SLAM, object bounding boxes are shown
in green and category labels shown in red. The transparent point cloud background is just
shown for visualization.

100

Object-SLAM with Joint Object Modeling and Mapping

ORB-SLAM2

Figure 52: Qualitative comparison of the performance of Object-SLAM with joint ob-
ject modeling and mapping (object-object loop closure, our approach) and ORB-SLAM2
(keyframe based loop-closure) method on CPL dataset. (Top) Shows the aggregated point
cloud and trajectory estimated by our approach. Zoom in along the trajectory in the elec-
tronic version to see the objects. (Bottom) Shows the aggregated point cloud and trajectory
estimated by ORB-SLAM2 method. For object SLAM, object bounding boxes are shown
in green and category labels shown in red. The transparent point cloud background is just
shown for visualization.

101

Object-SLAM with Joint Object Modeling and Mapping

ORB-SLAM2

Figure 53: Qualitative comparison of the performance of Object-SLAM with joint ob-
ject modeling and mapping (object-object loop closure, our approach) and ORB-SLAM2
(keyframe based loop-closure) method on Klaus dataset. (Top) Shows the aggregated point
cloud and trajectory estimated by our approach. Zoom in along the trajectory in the elec-
tronic version to see the objects. (Bottom) Shows the aggregated point cloud and trajectory
estimated by ORB-SLAM2 method. For object SLAM, object bounding boxes are shown
in green and category labels shown in red. The transparent point cloud background is just
shown for visualization.

102

Object-SLAM with Joint Object Modeling and Mapping

ORB-SLAM2

Figure 54: Qualitative comparison of the performance of Object-SLAM with joint ob-
ject modeling and mapping (object-object loop closure, our approach) and ORB-SLAM2
(keyframe based loop-closure) method on a dataset collected at a military facility. (Top)
Shows the aggregated point cloud and trajectory estimated by our approach. (Bottom)
Shows the aggregated point cloud and trajectory estimated by ORB-SLAM2 method. For
object SLAM, object bounding boxes are shown in green and category labels shown in red.
The transparent point cloud background is just shown for visualization.

103

5.5 Conclusions

In this chapter, we proposed an approach to SLAM with simultaneous object modeling and

mapping. Objects provide a richer description of the environment and can be more effective

for data association. We use the modeled objects as landmarks and the data association

among them assist with the loop closure in large environments. The pipeline follows an

online learning framework to avoid any pre-training on the object models.

We show that our approach requires less memory as compared to the state of art RGB-

D mapping approach like ORB-SLAM2 (Table 10, 13 and 17) whereas the accuracy of

the trajectory estimated by our approach is similar to other RGB-D mapping approaches

(Table 8, 11, 16). We also show that our approach scales better with the size of the map as

compared to other RGB-D mapping approaches (Table 17, 15).

The take-home message from this chapter is that dense RGB-D mapping approaches

like ElasticFusion or Kintinuous or sparse feature based methods like ORB-SLAM2 can

be used for local and accurate visual tracking but we don’t have to store all the dense map

information (for ElasticFusion or Kintinuous) or sparse keyframes (for ORB-SLAM2) for

large-scale trajectory estimation. Storing just the salient information like objects (or planes)

is good enough for closing the loop resulting in the same level of accuracy as other state of

art RGB-D mapping approaches.

104

CHAPTER VI

DISTRIBUTED OBJECT BASED SLAM WITH JOINT OBJECT

MODELING AND MAPPING

6.1 Introduction

The distributed object SLAM approach introduced in Chapter 4 assumes that the object

model of each instance that each mapped in an environment is known in advance. However

it can be challenging to store a model of all the object instances due to large intra-class

variation. Searching through all the object models for object pose estimation can be com-

putationally demanding. It will not generalize to new unseen instances of the same object

category as well.

In the previous chapter, we introduce a framework for object based SLAM with joint

object modeling and mapping and show that the approach is nearly as accurate as the state

of art RGB-D mapping approach while using less memory than those approaches.

Contribution. In this chapter, we propose to integrate the joint object modeling and

mapping framework (Chapter 5) with the distributed object SLAM approach (Chapter 4)

resulting in distributed object based SLAM with Joint Object Modeling and Mapping. In

other words, we extend the distributed object SLAM approach introduced in Chapter 4 to

the case where object models are previously unknown and are modeled jointly with Dis-

tributed Object based SLAM. We use an off-the-shelf lightweight convolutional network

based object detectors to detect object at categorical level which are then modeled at in-

stance level by integrating detection across frames. The modeled object instance can then

be data associated against other instances seen by the same robot or other robots to generate

object-object constraint. We show that this approach generalizes multi robot object-based

SLAM to unseen object models while further reducing the memory required to store the

105

object models.

Section 6.2 introduces the additional mathematical notation and formalizes the problem

of distributed object SLAM with joint object modeling and mapping. Section 6.3 presents

the implementation details of our system.

Figure 55: Factor graph representation of Distributed Object based SLAM with Joint
Modeling and Mapping. xαi and xβi denote the poses assumed by robot α and β at time i
respectively. The pose of the kth object as estimated by robot α and β is denoted with oαk
and oβk respectively. Green dots shows inter-robot factors whereas orange and purple dots
shows intra-robot factors.

6.2 Problem Formulation: Distributed Object-based SLAM with Joint
Object Modeling And Mapping

We consider a distributed object based SLAM system as defined in Section 4.2. Each robot,

in addition to estimating its own trajectory using local measurements and occasional com-

munication with other robots, also models a set of objects in the environment. We model

each trajectory as a finite set of poses; the trajectory of robot α is xα = [xα1 ,xα2 , . . .]. We

denote with oαk ∈ SE(3) the pose of the kth object as modeled by of robot α (Fig. 55).

106

Measurements. Similar to distributed object based SLAM (Section 4.2), we assume

that each robot acquires two types of relative pose measurements: intra-robot and inter-

robot measurements. The intra-robot measurements consist of the odometry measure-

ments, which constrain consecutive robot poses (e.g., xαi and xαi+1
in Fig. 55), and object

measurements which constrains robot poses with the corresponding visible object land-

marks (e.g., xαi and oαk in Fig. 55). The inter-robot measurements relate the object poses

observed by different robots. During a rendezvous between robot α and robot β, each

robot shares the label and object TDF representation of detected object landmarks with the

other robot. If there exists a matching object landmark, the teammates add inter-robot mea-

surements, enforcing the object pose estimate to be consistent across the teammates. For

instance, if oβk and oαk in Fig. 55 model the the same object, then the two models should

align in the global coordinate frame. We use sparse matching followed by ICP to find

the relative transformation between the modeled objects which is used as the inter-robot

measurement.

The intra-robot and inter-robot object measurements follow the same measurements

model of eq. (1). For instance, if the robot α at time i and at pose xαi observes an object

at pose oαk , then the corresponding measurement z̄xαioαk
measures the relative pose between

xαi and oαk . Similarly we denote inter-robot measurement between object poses oαk and oβk

as z̄o
α
k

oβk
.

In the following, we denote with EαI the set of intra-robot odometry for robot α, while

we call EI the set of intra-robot odometry measurements for all robots in the team, i.e., EI =

∪α∈ΩEαI . Similarly the set of intra-robot object measurements for robot α is denoted as Eαo ,

whereas the set of all intra-robot object measurements is denoted as Eo. Similar to Section

3.2, the set of inter-robot measurements involving robot α is denoted with EαS . The set of

all inter-robot measurements is denoted with ES . The set of all available measurements is

then E = EI ∪EO∪ES . Note that each robot only has access to its own intra and inter-robot

measurements EαI , EαO and EαS .

107

ML trajectory and objects estimation. Let us collect all robot trajectories and object

poses in a (to-be-estimated) set of robot poses x = [xα ,xβ ,xγ , . . .] and set of object poses

o = [oα,oβ,oγ, . . .]. The ML estimate for x and o is defined as the maximum of the

measurement likelihood:

x?,o? = arg max
x,o

∏
(xαi ,xαi+1)∈EI

L(z̄
xαi
xαi+1

| x)︸ ︷︷ ︸
odometry factors

∏
(xαi ,o

α
k)∈EO

L(z̄
xαi
oαk
| x,o)︸ ︷︷ ︸

intra-robot object-measurement factors∏
(oαi ,o

β
j)∈ES

L(z̄
oαi

oβj
| x,o)︸ ︷︷ ︸

inter-robot object-object factors

(31)

where we used the same assumptions on measurement noise as in Section 3.2. Defining

X = x ∪ o, we rewrite eq. (28) as:

X ? = arg max
X

∏
(αi,βj)∈E

L(z̄αiβj | X) (32)

Since the optimization problem in eq. (29) has the same structure of the one in eq. (2),

we follow the same steps to solve it in a distributed manner using the Distributed Gauss-

Seidel method.

The next section presents the implementation details of our distributed object-based

SLAM system.

6.3 Implementation Details: Distributed Object based SLAM with Joint
Object Modeling and Mapping

Ego-Motion Estimation. Each robot collects 3D scans using Velodyne 32E, RGB-D scans

using Orbbec Astra sensor, and inertial measurements using IMU and odometry measure-

ments using wheel sensors. Fig. 22 shows the sensor layout on a Jackal robot. Relative

pose estimates from all the sensors are fused together using OmniMapper[128] to estimate

robot’s ego-motion1. Fig. 3 shows the overview of ego-motion estimation.

1https://github.com/CognitiveRobotics/omnimapper

108

Specifically, 3D scans from Veldoyne 32E are used to compute relative pose with re-

spect to the previous scan using GICP (generalized iterative closest point [110]). Inertial

measurements from IMU are fused with Wheel Odometry measurements to generate IMU

corrected odometry estimates. Relative pose estimates using RGB-D scans are computed

using ORB-SLAM [85]. Relative pose estimates are then fused using OmniMapper.

Object Modeling and Mapping. The implementation details for object modeling and

mapping is explained in detail in the previous chapter (Ch. 5). In summary, each frame is

segmented into planar and non-planar segments. At the same time, each frame is passed

through YOLO object detector which generates bounding box detections. All the non pla-

nar segments which are inside a detection bounding box are considered as object segment

and are associated with other co-visible object landmarks. Object models which are suffi-

ciently confident about their category label and are visible in sufficient number of frames

are then added as a variable in the SLAM factor graph. Corresponding object-pose factors

are added to the factor graph as well. Object-object loop closure runs in a parallel thread,

where it tries to match the object landmarks which are added to the factor graph. If suc-

cessful, the loop closure thread adds object-object loop closure factor to the factor graph.

Figure 45 shows the complete flowchart.

Robot Communication. During a rendezvous between robots α and β, robot α com-

municates the category labels (class) and object TDF representation of all the added objects

landmarks to robot β. The communicated object is matched to all the other landmarks hav-

ing the same object category label. Correspondences are estimated using 3DMatch [139].

The estimated relative pose given the sparse correspondences is then further refined using

ICP. If the average euclidean distance of the transformed points in one object is less than

10−3 to the points in the matching object, we consider the matching to be successful. The

resulting transformation is then used as the object-object intra-robot measurement and the

corresponding factor is added to the factor graph.

The list of shared objects contains pairs (oαk ,o
β
l) along with relative transformation

109

Robot α

RGBD
Frame

Object SLAM
with Joint

Object
Modeling and

Mapping

New
object
added

Robot β

RGBD
Frame

Modeled
objects

Match the new object
with all the objects

having same category
label

Compute Relative
Pose

If match is
successful Object SLAM

with Joint
Object

Modeling and
Mapping

Distributed
Optimizer

Figure 56: Overview of Distributed Object SLAM Communication

required to align the object models in the global coordinate frame. An overview of the

robot communication pipeline is shown in Fig. 56.

Next we show the experimental evaluation which includes field experiments in different

indoor environments.

6.4 Experiments
6.4.1 Experimental Setup

In order to evaluate the performance of our algorithm, we created new large scale datasets

with a team of Jackal robots in different indoor scenarios. In all the scenarios, the objects

from the BigBird dataset [112] were randomly spread along the robot trajectory. We fuse

the estimates from RGB-D sensor, laser scanner, IMU and wheel odometry for ego motion

estimation as explained in Section 6.3. For object detection, we finetune the YOLO v2

detector on a subset of objects from BigBird dataset.

110

We compare the performance of distributed object-SLAM with joint object modeling

and mapping with distributed ORB-SLAM2 (as explained in Chapter 3). For both the al-

gorithms, we use the same algorithm for ego-motion estimation. However for loop closure

and communication, in the case of distributed object-slam we use the modeled objects and

estimate object-object loop closures, whereas in the case of distributed ORB-SLAM2 we

use the keyframes to estimate the loop closure.

The experiments were performed in the IRIM lab and in the 3rd floor of Klaus building

at Georgia Tech. We also collected data inside a building at a military facility.

Table 18: Per-robot memory and communication requirement comparison of Distributed
Object-SLAM with joint object modeling and mapping (our approach) and Distributed
ORB-SLAM2 for dataset collected in IRIM lab given in Figure 57.

Robot ID
Memory Requirements Communication Requirements

Dist. Object-SLAM Dist. ORB-SLAM2 Dist. Object-SLAM Dist. ORB-SLAM2

1 5.6 MB 528 MB 61.6 MB 5808 MB

2 12 MB 333 MB 132 MB 3663 MB

3 12 MB 732 MB 132 MB 8052 MB

4 8.0 MB 237 MB 88 MB 2607 MB

5 8.6 MB 294 MB 94.6 MB 3234 MB

6 17 MB 954 MB 187 MB 10494 MB

7 11 MB 463 MB 121 MB 5093 MB

8 14 MB 631 MB 154 MB 6941 MB

9 18 MB 984 MB 198 MB 10824 MB

10 19 MB 834 MB 209 MB 9174 MB

11 3.2 MB 555 MB 35.2 MB 6105 MB

111

Table 19: Per-robot memory and communication requirement comparison of Distributed
Object-SLAM with joint object modeling and mapping (our approach) and Distributed
ORB-SLAM2 for dataset collected in Klaus building given in Figure 62.

Robot ID
Memory Requirements Communication Requirements

Dist. Object-SLAM Dist. ORB-SLAM2 Dist. Object-SLAM Dist. ORB-SLAM2

1 12 MB 762 MB 60 MB 3810 MB

2 3.5 MB 133 MB 17.5 MB 665 MB

3 8.0 MB 611 MB 40 MB 3055 MB

4 8.4 MB 941 MB 42 MB 4705 MB

5 6.2 MB 225 MB 31 MB 1125 MB

Table 20: Per-robot memory and communication requirement comparison of Distributed
Object-SLAM with joint object modeling and mapping (our approach) and Distributed
ORB-SLAM2 for dataset collected in a military training facility given in Figure 67 .

Robot ID
Memory Requirements Communication Requirements

Dist. Object-SLAM Dist. ORB-SLAM2 Dist. Object-SLAM Dist. ORB-SLAM2

1 38 MB 193 MB 380 MB 1930 MB

2 34 MB 294 MB 340 MB 2940 MB

3 23 MB 109 MB 230 MB 1090 MB

4 18 MB 124 MB 180 MB 1240 MB

5 15 MB 62 MB 150 MB 620 MB

6 15 MB 114 MB 150 MB 1140 MB

7 16 MB 87 MB 160 MB 870 MB

8 15 MB 129 MB 150 MB 1290 MB

9 4.0K 86 MB 40 MB 860 MB

10 41 MB 171 MB 410 MB 1710 MB

112

6.4.2 Results

Fig. 57, 62 and 67 show the qualitative comparison of the trajectories and point cloud esti-

mated by distributed Object SLAM with joint object modeling and mapping as compared

to distributed ORB-SLAM2 for IRIM, Klaus and Military facility dataset respectively.

6.4.2.1 Accuracy

Since we don’t have groundtruth trajectories for these experiments, we use ORB-SLAM’s

estimate as a groundtruth to measure the accuracy of the estimate given by our approach.

We define ATE w.r.t ORB-SLAM2 as ATE-O and RPE w.r.t ORB-SLAM2 as RPE-O. Fig-

ure 58 and 59 shows ATE-O and RPE-O for the IRIM dataset. We also computed ATE* and

RPE* with respect to the centralized estimate. Figure 60 and 61 shows ATE* and RPE* for

IRIM dataset. Similarly, Fig. 63, 64, 65 and 66 shows ATE-O, RPE-O, ATE* and RPE*

for Klaus dataset respectively. Figure 68 and 69 shows ATE-O and RPE-O for the dataset

collected in a military facility. Given the plots, we can see that the estimate returned by

our approach is close to the estimate returned by the distributed RGB-D mapping approach

(ORB-SLAM2).

6.4.2.2 Memory

Tables 18, 19, 20 compares per-robot memory requirement of Distributed Object-SLAM

as compared to Distributed ORB-SLAM2. The per-robot memory requirement in the case

of ORB-SLAM2 is the amount of memory required to store the keyframes. In the case of

object level map, it is the amount of memory required to store the object models. We can

see that Distributed Object-SLAM with joint object modeling and mapping requires less

memory than Distributed ORB-SLAM2 for all the sequences. This shows that our approach

reduces the memory requirements while maintaining the final accuracy as distributed ORB-

SLAM2. The amount of memory required to store all the models in BigBird data is 203

MB. Tables 18, 19, 20 confirms that the memory requirement of joint object modeling and

113

mapping is less than object-slam with known object models.

6.4.2.3 Communication Requirement

Tables 18, 19, 20 show that, as expected, the per-robot memory requirement is orders of

magnitude smaller with our object-based map as compared to key-frame based maps (ORB-

SLAM2). When using ORB-SLAM2, the robots are required to send keyframes at every

rendezvous to estimate their relative pose. Assuming in the worst case scenario, each robot

has to send all the keyframes to all the robots, then the average communication requirement

for each robot in the case of ORB-SLAM2 is computed as nMc where n is the number of

robots and Mc is the memory required to store the keyframes. Communication in the case

of our object-based map requires sending object models; a upper bound in the worst case

scenario can be computed as nMo where n is the number of robots and Mo is the memory

required to store object models. Tables 18, 19, 20 confirms that our approach provides a

remarkable advantage in terms of communication burden as it requires transmitting orders

of magnitude less than keyframe-based approach. However, the communication require-

ment for distributed object based SLAM with joint object modeling and mapping is more

than the memory requirement for distributed object based SLAM with known object mod-

els since in the latter case, we only have to communicate object category labels and pose

where as in the case of joint object modeling and mapping, modeled objects have to be

communicated.

114

Distributed Object-SLAM with Joint Object Modeling and Mapping

Distributed ORB-SLAM2

Figure 57: Test with 11 robots in the IRIM lab. Shows the qualitative comparison of the
performance of distributed object-SLAM with joint object modeling and mapping (object-
object loop closure, our approach) and distributed ORB-SLAM2 (keyframe based loop-
closure) method. (Top) Shows the aggregated point cloud and trajectories estimated by
our approach. Zoom in along the trajectory in the electronic version to see the objects.
(Bottom) Shows the aggregated point cloud and trajectories estimated by distributed ORB-
SLAM2 method (Chpater 3). For object SLAM, object bounding boxes are shown in green
and category labels shown in red. Transparent point cloud background is just shown for the
visualization of final estimates.

115

Figure 58: Per-Robot ATE-O comparison (in meters) with respect to ORB-SLAM2 esti-
mate for data collected in IRIM lab given in Fig. 57.

Figure 59: Per-Robot RPE-O comparison with respect to ORB-SLAM2 estimate for data
collected in IRIM lab given in Fig. 57.

116

Figure 60: Per-Robot ATE* comparison (in meters) with respect to Centralized estimate
for data collected in IRIM lab given in Fig. 57.

Figure 61: Per-Robot RPE* comparison with respect to Centralized estimate for data
collected in IRIM lab given in Fig. 57.

117

Distributed Object-SLAM with Joint Object Modeling and Mapping

Distributed ORB-SLAM2

Figure 62: Test with 5 robots in Klaus building. Shows the qualitative comparison of the
performance of distributed object-SLAM with joint object modeling and mapping (object-
object loop closure, our approach) and distributed ORB-SLAM2 (keyframe based loop-
closure) method. (Top) Shows the aggregated point cloud and trajectories estimated by our
approach. Zoom in along the trajectory in the electronic version to see the objects. (Bot-
tom) Shows the aggregated point cloud and trajectories estimated by ORB-SLAM2 method
(Chpater 3). For object SLAM, object bounding boxes are shown in green and category la-
bels shown in red. Transparent point cloud background is just shown for visualization.

118

Figure 63: Per-Robot ATE-O comparison (in meters) w.r.t ORB-SLAM2 estimate for
data collected in Klaus building given in Fig. 62.

Figure 64: Per-Robot RPE-O comparison w.r.t ORB-SLAM2 estimate for data collected
in Klaus building given in Fig. 62.

119

Figure 65: Per-Robot ATE* comparison (in meters) with respect to Centralized estimate
for data collected in Klaus building given in Fig. 62.

Figure 66: Per-Robot RPE* comparison with respect to Centralized estimate for data
collected in Klaus building given in Fig. 62.

120

Distributed Object-SLAM with Joint Object Modeling and Mapping

Distributed ORB-SLAM2

Figure 67: Test with 10 robots in a military training facility. Shows the qualitative
comparison of the performance of distributed object-SLAM with joint object modeling
and mapping (object-object loop closure, our approach) and distributed ORB-SLAM2
(keyframe based loop-closure) method. (Top) Shows the aggregated point cloud and trajec-
tories estimated by our approach. (Bottom) Shows the aggregated point cloud and trajec-
tories estimated by ORB-SLAM2 method (Chpater 3). For object SLAM, object bounding
boxes are shown in green and category labels shown in red. Transparent point cloud back-
ground is just shown for visualization.

121

Figure 68: Per-Robot ATE-O comparison (in meters) with respect to ORB-SLAM2 esti-
mate for data collected in a military training facility given in Fig. 67.

Figure 69: Per-Robot RPE-O comparison with respect to ORB-SLAM2 estimate for data
collected in a military training facility lab given in Fig. 67.

122

6.5 Conclusions

In this chapter, we proposed an approach to distributed object based SLAM with simul-

taneous object modeling and mapping. We extend the distributed object SLAM approach

introduced in Chapter 4 to the case where object models are previously unknown and are

modeled jointly with Distributed Object based SLAM. We use the off-the-shelf lightweight

convolutional network based object detectors to detect object at categorical level which are

then modeled at instance level by integrating detection across frames. The modeled object

instance can then be data associated against other instances seen by the same robot or other

robots to generate object-object constraint.

We show that this approach generalizes distributed object-based SLAM to unseen ob-

ject models while further reducing the memory required to store the object models (Tables

18, 19, 20). When compared to the state of art RGB-D mapping approach like ORB-

SLAM2, this approach has less memory and communication requirement since we don’t

have to store or communicate keyframes or dense point clouds. At the same time, the esti-

mate returned by our approach is close to the estimate returned by the distributed RGB-D

mapping approach (distributed ORB-SLAM2).

123

CHAPTER VII

CONCLUSIONS AND FUTURE WORK

In this thesis, we aim at designing a technique that allows each robot in a multi-robot set-

ting to build its own object level map while asking for minimal knowledge of the map

of the teammates. We show that using objects as landmarks in a distributed SLAM frame-

work optimized using the state of art distributed optimizer both reduces the communication

bandwidth and the memory used by each robot, outputs a human understandable map and

improves the robustness and scalability of distributed SLAM.

Our first contribution is the design of a state of art distributed optimizer for distributed

pose estimation. Our approach leverages recent results [20] which show that the maximum

likelihood trajectory is well approximated by a sequence of two quadratic subproblems.

The main contribution of this work (Chapter 3) is to show that these subproblems can be

solved in a distributed manner, using the distributed Gauss-Seidel (DGS) algorithm. We

show that DGS has excellent performance in practice: (i) its communication burden scales

linearly in the number of separators and respect agents’ privacy, (ii) it is robust to noise

and the resulting estimates are sufficiently accurate after few communication rounds, (iii)

the approach is simple to implement and scales well to large teams. We demonstrated the

effectiveness of the DGS approach in extensive simulations and field tests.

Our second contribution is to extend the DGS approach to using known object mod-

els as landmarks for multi robot mapping (Chapter 4). We show that using object-based

abstractions in a distributed setup further reduces the memory requirement and the infor-

mation exchange among teammates. We demonstrate our multi robot object-based mapping

approach in Gazebo simulations and in field tests performed in a military training facility.

The approach for object-based mapping introduced in Chapter 4 assumes that a model

124

of each observed objects is known in advance. However it can be challenging to store a

large number of object models, and to account for intra-class variations. Therefore, our

third contribution (chapter 5) is to extend our approach to the case where object models are

not previously known (at an instance level) and instead object models are jointly optimized

within our SLAM framework. We show that this approach requires less memory and scales

better with the size of the map as compared to the state of art RGB-D mapping approaches.

Finally, our final contribution (chapter 6) is to extend the distributed object SLAM

approach introduced in Chapter 4 to the case where object models are previously unknown

and are modeled jointly with Distributed Object based SLAM.

We are currently extending the approach proposed in this paper in several directions.

First, our current approach is based on a nonlinear least squares formulation which is not

robust to gross outliers. Therefore future work will focus on designing more general al-

gorithms that are robust to spurious measurements. We will in particular investigate dis-

tributed implementation of outlier rejection method proposed by Carlone et al. [17] so

that they can be applied to distributed systems without requiring all robots to exchange all

measurements. Second, our assumption of representing objects using truncated distance

function (TDF) can be further explored and estimating an optimal object representation

which reduces communication requirement without compromising accuracy is a possible

future direction. Third, we currently represent the contextual information around the ob-

jects by including additional voxel information around the 3D bounding boxes. We also use

the keyframes viewing the objects to further verify the object-object matches. Simpler and

elegant ways to encode the contextual information around objects can be studied further

in the future works. Fourth, we are working on an incremental version of the Distributed

Gauss-Seidel algorithm which can be useful for real-time distributed mapping. Finally,

we plan to extend our experimental evaluation to flying robots. While we demonstrated

the effectiveness of our approach in large teams of ground robots, we believe that the next

grand challenge is to enable coordination and distributed mapping in swarms of agile micro

125

aerial vehicles with limited communication and computation resources.

126

REFERENCES

[1] “Deformation-based loop closure for large scale dense rgb-d slam,” in IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), (Tokyo,Japan), 2013.

[2] “Robust real-time visual odometry for dense RGB-D mapping,” in IEEE Intl. Conf.
on Robotics and Automation (ICRA), 2013.

[3] ANDERSON, B., SHAMES, I., MAO, G., and FIDAN, B., “Formal theory of noisy
sensor network localization,” SIAM Journal on Discrete Mathematics, vol. 24, no. 2,
pp. 684–698, 2010.

[4] ANDERSSON, L. and NYGARDS, J., “C-SAM : Multi-robot SLAM using square
root information smoothing,” in IEEE Intl. Conf. on Robotics and Automation
(ICRA), 2008.

[5] ARAGUES, R., CARLONE, L., CALAFIORE, G., and SAGUES, C., “Multi-agent
localization from noisy relative pose measurements,” in IEEE Intl. Conf. on Robotics
and Automation (ICRA), pp. 364–369, 2011.

[6] ARAGUES, R., CARLONE, L., CALAFIORE, G., and SAGUES, C., “Distributed
centroid estimation from noisy relative measurements,” Systems & Control Letters,
vol. 61, no. 7, pp. 773–779, 2012.

[7] ARAGUES, R., CORTES, J., and SAGUES, C., “Distributed consensus on robot
networks for dynamically merging feature-based maps,” IEEE Transactions on
Robotics, 2012.

[8] BAHR, A., WALTER, M., and LEONARD, J., “Consistent cooperative localization,”
in IEEE Intl. Conf. on Robotics and Automation (ICRA), pp. 3415–3422, May 2009.

[9] BAILEY, T., BRYSON, M., MU, H., VIAL, J., MCCALMAN, L., and DURRANT-
WHYTE, H., “Decentralised cooperative localisation for heterogeneous teams of
mobile robots,” in IEEE Intl. Conf. on Robotics and Automation (ICRA), 2011.

[10] BAILEY, T. and DURRANT-WHYTE, H., “Simultaneous localization and mapping
(SLAM): part II,” IEEE Robotics Automation Magazine, vol. 13, no. 3, pp. 108–117,
2006.

[11] BAO, S. Y.-Z., BAGRA, M., CHAO, Y.-W., and SAVARESE, S., “Semantic structure
from motion with points, regions, and objects,” in CVPR, pp. 2703–2710, 2012.

[12] BAROOAH, P. and HESPANHA, J., “Semantic structure from motion,” in Intl. Conf.
on Intelligent Sensing and Information Processing, pp. 226–231, 2005.

127

[13] BAROOAH, P. and HESPANHA, J., “Estimation on graphs from relative measure-
ments,” Control System Magazine, vol. 27, no. 4, pp. 57–74, 2007.

[14] BENGIO, Y., GOODFELLOW, I. J., and COURVILLE, A., “Deep learning.” Book in
preparation for MIT Press, 2015.

[15] BERTSEKAS, D. and TSITSIKLIS, J., Parallel and Distributed Computation: Nu-
merical Methods. Englewood Cliffs, NJ: Prentice-Hall, 1989.

[16] CALAFIORE, G., CARLONE, L., and WEI, M., “A distributed technique for lo-
calization of agent formations from relative range measurements,” IEEE Trans. on
Systems, Man, and Cybernetics, Part A, vol. 42, no. 5, pp. 1083–4427, 2012.

[17] CARLONE, L., CENSI, A., and DELLAERT, F., “Selecting good measurements via
`1 relaxation: a convex approach for robust estimation over graphs,” in IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2014.

[18] CARLONE, L., NG, M. K., DU, J., BONA, B., and INDRI, M., “Simultaneous local-
ization and mapping using Rao-Blackwellized particle filters in multi robot systems,”
J. of Intelligent and Robotic Systems, vol. 63, no. 2, pp. 283–307, 2011.

[19] CARLONE, L., ROSEN, D., CALAFIORE, G., LEONARD, J., and DELLAERT, F.,
“Lagrangian duality in 3D SLAM: Verification techniques and optimal solutions,”
in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2015.

[20] CARLONE, L., TRON, R., DANIILIDIS, K., and DELLAERT, F., “Initialization tech-
niques for 3D SLAM: a survey on rotation estimation and its use in pose graph opti-
mization,” in IEEE Intl. Conf. on Robotics and Automation (ICRA), pp. 4597–4604,
2015.

[21] CARRON, A., TODESCATO, M., CARLI, R., and SCHENATO, L., “An asynchronous
consensus-based algorithm for estimation from noisy relative measurements,” IEEE
Transactions on Control of Network Systems, vol. 1, no. 3, pp. 2325–5870, 2014.

[22] CHOI, S., ZHOU, Q.-Y., and KOLTUN, V., “Robust reconstruction of indoor
scenes,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2015.

[23] CHOUDHARY, S., CARLONE, L., NIETO, C., ROGERS, J., CHRISTENSEN, H., and
DELLAERT, F., “Distributed trajectory estimation with privacy and communication
constraints: a two-stage distributed Gauss-Seidel approach,” in IEEE Intl. Conf. on
Robotics and Automation (ICRA), 2016.

[24] CHOUDHARY, S., CARLONE, L., NIETO, C., ROGERS, J., CHRISTENSEN, H., and
DELLAERT, F., “Multi robot object-based SLAM,” in Intl. Sym. on Experimental
Robotics (ISER), 2016.

128

[25] CHOUDHARY, S., TREVOR, A. J. B., CHRISTENSEN, H. I., and DELLAERT, F.,
“SLAM with object discovery, modeling and mapping,” in 2014 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, Chicago, IL, USA, September
14-18, 2014, pp. 1018–1025, 2014.

[26] CIVERA, J., GÁLVEZ-LÓPEZ, D., RIAZUELO, L., TARDÓS, J. D., and MONTIEL,
J. M. M., “Towards semantic SLAM using a monocular camera,” in 2011 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS 2011, San Fran-
cisco, CA, USA, September 25-30, 2011, pp. 1277–1284, 2011.

[27] COLLET ROMEA, A., XIONG, B., GURAU, C., HEBERT, M., and SRINIVASA, S.,
“Exploiting domain knowledge for object discovery,” in IEEE International Confer-
ence on Robotics and Automation (ICRA) (IEEE, ed.), May 2013.

[28] CUI, Y., SCHUON, S., CHAN, D., THRUN, S., and THEOBALT, C., “3d shape
scanning with a time-of-flight camera,” in 2010 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pp. 1173–1180, June 2010.

[29] CUNNINGHAM, A., INDELMAN, V., and DELLAERT, F., “DDF-SAM 2.0: Con-
sistent distributed smoothing and mapping,” in IEEE Intl. Conf. on Robotics and
Automation (ICRA), (Karlsruhe, Germany), May 2013.

[30] CUNNINGHAM, A., PALURI, M., and DELLAERT, F., “DDF-SAM: Fully dis-
tributed slam using constrained factor graphs,” in IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), 2010.

[31] DAI, A., NIESSNER, M., ZOLLHÖFER, M., IZADI, S., and THEOBALT, C.,
“Bundlefusion: Real-time globally consistent 3d reconstruction using online surface
re-integration,” arXiv preprint arXiv:1604.01093, 2016.

[32] DAVISON, A. J., REID, I. D., MOLTON, N. D., and STASSE, O., “Monoslam:
Real-time single camera slam,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 29, no. 6, pp. 1052–1067, 2007.

[33] DELLAERT, F., “Square Root SAM: Simultaneous location and mapping via square
root information smoothing,” in Robotics: Science and Systems (RSS), 2005.

[34] DELLAERT, F. and KAESS, M., “Square Root SAM: Simultaneous localization
and mapping via square root information smoothing,” Intl. J. of Robotics Research,
vol. 25, pp. 1181–1203, Dec 2006.

[35] DELLAERT, F., “Factor graphs and GTSAM: A hands-on introduction,” Tech. Rep.
GT-RIM-CP&R-2012-002, Georgia Institute of Technology, September 2012.

[36] DENG, J., DONG, W., SOCHER, R., LI, L.-J., LI, K., and FEI-FEI, L., “ImageNet:
A Large-Scale Hierarchical Image Database,” in CVPR09, 2009.

129

[37] DONG, J., NELSON, E., INDELMAN, V., MICHAEL, N., and DELLAERT, F., “Dis-
tributed real-time cooperative localization and mapping using an uncertainty-aware
expectation maximization approach,” in IEEE Intl. Conf. on Robotics and Automa-
tion (ICRA), 2015.

[38] DURRANT-WHYTE, H. and BAILEY, T., “Simultaneous localization and mapping:
Part I,” IEEE Robotics Automation Magazine, vol. 13, no. 2, 2006.

[39] ESTRADA, C., NEIRA, J., and TARDOS, J., “Hierarchical SLAM: Real-time accu-
rate mapping of large environments,” IEEE Trans. Robotics, vol. 21, pp. 588–596,
Aug 2005.

[40] FELZENSZWALB, P. and HUTTENLOCHER, D., “Efficient graph-based image seg-
mentation,” Intl. J. of Computer Vision, vol. 59, pp. 167–181, 2004.

[41] FINMAN, R., WHELAN, T., KAESS, M., and LEONARD, J. J., “Toward lifelong
object segmentation from change detection in dense RGB-D maps,” in 2013 Euro-
pean Conference on Mobile Robots, Barcelona, Catalonia, Spain, September 25-27,
2013, pp. 178–185, 2013.

[42] FOLKESSON, J. and CHRISTENSEN, H., “Graphical SLAM – a self-correcting
map,” in IEEE Intl. Conf. on Robotics and Automation (ICRA), vol. 1, pp. 383–390,
2004.

[43] FRANCESCHELLI, M. and GASPARRI, A., “On agreement problems with Gossip
algorithms in absence of common reference frames,” in IEEE Intl. Conf. on Robotics
and Automation (ICRA), vol. 337, pp. 4481–4486, 2010.

[44] FRERIS, N. and ZOUZIAS, A., “Fast distributed smoothing of relative measure-
ments,” in IEEE Conf. on Decision and Control, pp. 1411–1416, 2015.

[45] FRESE, U., “Treemap: An O(log n) algorithm for indoor simultaneous localization
and mapping,” Autonomous Robots, vol. 21, no. 2, pp. 103–122, 2006.

[46] FRESE, U., LARSSON, P., and DUCKETT, T., “A multilevel relaxation algorithm
for simultaneous localisation and mapping,” IEEE Trans. Robotics, vol. 21, pp. 196–
207, April 2005.

[47] GÁLVEZ-LÓPEZ, D., SALAS, M., TARDÓS, J. D., and MONTIEL, J. M. M., “Real-
time monocular object SLAM,” Robotics and Autonomous Systems, vol. 75, pp. 435–
449, 2016.

[48] GIRSHICK, R. B., “Fast R-CNN,” CoRR, vol. abs/1504.08083, 2015.

[49] GIRSHICK, R. B., DONAHUE, J., DARRELL, T., and MALIK, J., “Rich feature
hierarchies for accurate object detection and semantic segmentation,” in 2014 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2014, Columbus,
OH, USA, June 23-28, 2014, pp. 580–587, 2014.

130

[50] GRISETTI, G., KUEMMERLE, R., STACHNISS, C., FRESE, U., and HERTZBERG,
C., “Hierarchical optimization on manifolds for online 2D and 3D mapping,” in
IEEE Intl. Conf. on Robotics and Automation (ICRA), (Anchorage, Alaska), May
2010.

[51] GRISETTI, G., KÜMMERLE, R., and NI, K., “Robust optimization of factor graphs
by using condensed measurements,” in IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), 2012.

[52] HATANAKA, T., FUJITA, M., and BULLO, F., “Vision-based cooperative estimation
via multi-agent optimization,” in IEEE Conf. on Decision and Control, 2010.

[53] HENRY, P., KRAININ, M., HERBST, E., REN, X., and FOX, D., “Rgb-d mapping:
Using depth cameras for dense 3d modeling of indoor environments,” in Intl. Sym.
on Experimental Robotics (ISER), 2010.

[54] HOIEM, D. and SAVARESE, S., Representations and Techniques for 3D Object
Recognition and Scene Interpretation. Synthesis Lectures on Artificial Intelligence
and Machine Learning, Morgan & Claypool Publishers, 2011.

[55] HOLZER, S., RUSU, R. B., DIXON, M., GEDIKLI, S., and NAVAB, N., “Adap-
tive neighborhood selection for real-time surface normal estimation from organized
point cloud data using integral images,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 2684–2689, 2012.

[56] HORNUNG, A., WURM, K. M., BENNEWITZ, M., STACHNISS, C., and BURGARD,
W., “OctoMap: An efficient probabilistic 3D mapping framework based on octrees,”
Autonomous Robots, 2013. Software available at http://octomap.github.
com.

[57] HOWARD, A., “Multi-robot simultaneous localization and mapping using particle
filters,” Intl. J. of Robotics Research, vol. 25, no. 12, pp. 1243–1256, 2006.

[58] INDELMAN, V., CARLONE, L., and DELLAERT, F., “Planning under uncertainty in
the continuous domain: a generalized belief space approach,” in IEEE Intl. Conf. on
Robotics and Automation (ICRA), 2014.

[59] INDELMAN, V., GURFIL, P., RIVLIN, E., and ROTSTEIN, H., “Graph-based dis-
tributed cooperative navigation for a general multi-robot measurement model,” Intl.
J. of Robotics Research, vol. 31, August 2012.

[60] JIA, Y., SHELHAMER, E., DONAHUE, J., KARAYEV, S., LONG, J., GIRSHICK, R.,
GUADARRAMA, S., and DARRELL, T., “Caffe: Convolutional architecture for fast
feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[61] KAESS, M., JOHANNSSON, H., ROBERTS, R., ILA, V., LEONARD, J., and DEL-
LAERT, F., “iSAM2: Incremental smoothing and mapping using the Bayes tree,”
Intl. J. of Robotics Research, vol. 31, pp. 217–236, Feb 2012.

131

[62] KARPATHY, A., MILLER, S., and FEI-FEI, L., “Object discovery in 3d scenes
via shape analysis,” in IEEE International Conference on Robotics and Automation
(ICRA) (IEEE, ed.), May 2013.

[63] KENDALL, A., GRIMES, M., and CIPOLLA, R., “Convolutional networks for real-
time 6-dof camera relocalization,” CoRR, vol. abs/1505.07427, 2015.

[64] KERL, C., STURM, J., and CREMERS, D., “Dense visual slam for rgb-d cam-
eras,” in 2013 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pp. 2100–2106, Nov 2013.

[65] KERL, C., STURM, J., and CREMERS, D., “Robust odometry estimation for rgb-
d cameras,” 2013 IEEE International Conference on Robotics and Automation,
pp. 3748–3754, 2013.

[66] KIM, B., KAESS, M., FLETCHER, L., LEONARD, J., BACHRACH, A., ROY, N.,
and TELLER, S., “Multiple relative pose graphs for robust cooperative mapping,”
in IEEE Intl. Conf. on Robotics and Automation (ICRA), (Anchorage, Alaska),
pp. 3185–3192, May 2010.

[67] KIM, Y. M., MITRA, N. J., YAN, D.-M., and GUIBAS, L. J., “Acquiring 3d indoor
environments with variability and repetition,” ACM Trans. Graph., vol. 31, no. 6,
p. 138, 2012.

[68] KNUTH, J. and BAROOAH, P., “Collaborative localization with heterogeneous inter-
robot measurements by Riemannian optimization,” in IEEE Intl. Conf. on Robotics
and Automation (ICRA), pp. 1534–1539, 2013.

[69] KOPPULA, H., ANAND, A., JOACHIMS, T., and SAXENA, A., “Semantic labeling
of 3d point clouds for indoor scenes,” in Advances in Neural Information Processing
Systems (NIPS), 2011.

[70] KOSTAVELIS, I. and GASTERATOS, A., “Semantic mapping for mobile robotics
tasks: A survey,” Robotics and Autonomous Systems, vol. 66, pp. 86 – 103, 2015.

[71] KRIZHEVSKY, A., SUTSKEVER, I., and HINTON, G. E., “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Information Pro-
cessing Systems 25: 26th Annual Conference on Neural Information Processing Sys-
tems 2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada,
United States., pp. 1106–1114, 2012.

[72] KUIPERS, B., “The spatial semantic hierarchy,” Artificial Intelligence, vol. 119,
pp. 191 – 233, 2000.

[73] KUNDU, A., LI, Y., DELLAERT, F., LI, F., and REHG, J. M., Joint Semantic
Segmentation and 3D Reconstruction from Monocular Video, pp. 703–718. Cham:
Springer International Publishing, 2014.

132

[74] LAI, K., BO, L., and FOX, D., “Unsupervised feature learning for 3d scene label-
ing,” in 2014 IEEE International Conference on Robotics and Automation (ICRA),
pp. 3050–3057, May 2014.

[75] LAI, K., BO, L., REN, X., and FOX, D., “A large-scale hierarchical multi-view
rgb-d object dataset,” in Robotics and Automation (ICRA), 2011 IEEE International
Conference on, pp. 1817–1824, May 2011.

[76] LAZARO, M., PAZ, L., PINIES, P., CASTELLANOS, J., and GRISETTI, G., “Multi-
robot SLAM using condensed measurements,” in IEEE Intl. Conf. on Robotics and
Automation (ICRA), pp. 1069–1076, 2011.

[77] LECUN, Y., BOSER, B., DENKER, J. S., HENDERSON, D., HOWARD, R. E., HUB-
BARD, W., and JACKEL, L. D., “Backpropagation applied to handwritten zip code
recognition,” Neural Comput., vol. 1, pp. 541–551, Dec. 1989.

[78] LEONARD, J. and FEDER, H., “Decoupled stochastic mapping,” IEEE Journal of
Oceanic Engineering, pp. 561–571, October 2001.

[79] LEONARD, J. and NEWMAN, P., “Consistent, convergent, and constant-time
SLAM,” in Intl. Joint Conf. on AI (IJCAI), 2003.

[80] LIN, T.-Y., MAIRE, M., BELONGIE, S., HAYS, J., PERONA, P., RAMANAN, D.,
DOLLÃĄR, P., and ZITNICK, C. L., “Microsoft coco: Common objects in context,”
in European Conference on Computer Vision (ECCV), (ZÃijrich), 2014. Oral.

[81] MARTINEC, D. and PAJDLA, T., “Robust rotation and translation estimation in mul-
tiview reconstruction,” in IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), pp. 1–8, 2007.

[82] MCCORMAC, J., HANDA, A., DAVISON, A. J., and LEUTENEGGER, S., “Seman-
ticfusion: Dense 3D semantic mapping with convolutional neural networks,” CoRR,
vol. abs/1609.05130, 2016.

[83] MU, B., LIU, S. Y., PAULL, L., LEONARD, J., and HOW, J. P., “Slam with objects
using a nonparametric pose graph,” in 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 4602–4609, Oct 2016.

[84] MUR-ARTAL, RAÚL, M. J. M. M. and TARDÓS, J. D., “ORB-SLAM: a versatile
and accurate monocular SLAM system,” IEEE Transactions on Robotics, vol. 31,
no. 5, pp. 1147–1163, 2015.

[85] MUR-ARTAL, R. and TARDÓS, J. D., “ORB-SLAM2: an open-source SLAM sys-
tem for monocular, stereo and RGB-D cameras,” arXiv preprint arXiv:1610.06475,
2016.

[86] NERURKAR, E., ROUMELIOTIS, S., and MARTINELLI, A., “Distributed maximum
a posteriori estimation for multi-robot cooperative localization,” in IEEE Intl. Conf.
on Robotics and Automation (ICRA), pp. 1402–1409, May 2009.

133

[87] NEWCOMBE, R., DAVISON, A., IZADI, S., KOHLI, P., HILLIGES, O., SHOTTON,
J., MOLYNEAUX, D., HODGES, S., KIM, D., and FITZGIBBON, A., “KinectFusion:
Real-time dense surface mapping and tracking,” in IEEE and ACM Intl. Sym. on
Mixed and Augmented Reality (ISMAR), pp. 127–136, 2011.

[88] NI, K., STEEDLY, D., and DELLAERT, F., “Tectonic SAM: Exact; out-of-core;
submap-based SLAM,” in IEEE Intl. Conf. on Robotics and Automation (ICRA),
(Rome; Italy), April 2007.

[89] NI, K. and DELLAERT, F., “Multi-level submap based slam using nested dissec-
tion,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2010.

[90] NIESSNER, M., ZOLLHÖFER, M., IZADI, S., and STAMMINGER, M., “Real-time
3d reconstruction at scale using voxel hashing,” ACM Transactions on Graphics
(TOG), 2013.

[91] NIETO-GRANDA, C., ROGERS III, J. G., TREVOR, A. J. B., and CHRISTENSEN,
H. I., “Semantic map partitioning in indoor environments using regional analysis,”
pp. 1451–1456, Oct 2010.

[92] NUCHTER, A. and HERTZBERG, J., “Towards semantic maps for mobile robots,”
Robot. Auton. Syst., vol. 56, pp. 915–926, Nov. 2008.

[93] OLFATI-SABER, R., “Swarms on sphere: A programmable swarm with syn-
chronous behaviors like oscillator networks,” in IEEE Conf. on Decision and Con-
trol, pp. 5060–5066, 2006.

[94] PAULL, L., HUANG, G., SETO, M., and LEONARD, J., “Communication-
constrained multi-AUV cooperative SLAM,” in IEEE Intl. Conf. on Robotics and
Automation (ICRA), 2015.

[95] PILLAI, S. and LEONARD, J., “Monocular slam supported object recognition,” in
Proceedings of Robotics: Science and Systems (RSS), (Rome, Italy), July 2015.

[96] PIOVAN, G., SHAMES, I., FIDAN, B., BULLO, F., and ANDERSON, B., “On frame
and orientation localization for relative sensing networks,” Automatica, vol. 49,
no. 1, pp. 206–213, 2013.

[97] PRONOBIS, A. and JENSFELT, P., “Large-scale semantic mapping and reasoning
with heterogeneous modalities,” in IEEE International Conference on Robotics and
Automation (ICRA), may 2012.

[98] RANGANATHAN, A. and DELLAERT, F., “Semantic Modeling of Places using Ob-
jects,” in Robotics: Science and Systems (RSS), (Atlanta; USA), 2007.

[99] REDMON, J., DIVVALA, S. K., GIRSHICK, R. B., and FARHADI, A., “You only
look once: Unified, real-time object detection,” CoRR, vol. abs/1506.02640, 2015.

134

[100] REDMON, J. and FARHADI, A., “Yolo9000: Better, faster, stronger,” arXiv preprint
arXiv:1612.08242, 2016.

[101] ROGERS, J. G., TREVOR, A. J. B., NIETO-GRANDA, C., and CHRISTENSEN,
H. I., “Simultaneous localization and mapping with learned object recognition and
semantic data association,” in 2011 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pp. 1264–1270, Sept 2011.

[102] ROSEN, D., CARLONE, L., BANDEIRA, A., and LEONARD, J., “SE-Sync: A certi-
fiably correct algorithm for synchronization over the special euclidean group,” 2016.

[103] ROUMELIOTIS, S. and BEKEY, G., “Distributed multi-robot localization,” IEEE
Trans. Robot. Automat., August 2002.

[104] RUSINKIEWICZ, S., HALL-HOLT, O., and LEVOY, M., “Real-time 3d model acqui-
sition,” ACM Trans. Graph., vol. 21, pp. 438–446, July 2002.

[105] RUSSELL, W., KLEIN, D., and HESPANHA, J., “Optimal estimation on the graph
cycle space,” IEEE Trans. Signal Processing, vol. 59, no. 6, pp. 2834–2846, 2011.

[106] RUSU, R. B., Semantic 3D Object Maps for Everyday Manipulation in Human Liv-
ing Environments. PhD thesis, Technische Universität München, 2009.

[107] RUSU, R. B., MARTON, Z. C., BLODOW, N., DOLHA, M. E., and BEETZ, M.,
“Functional object mapping of kitchen environments,” in IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), 2008.

[108] SALAS-MORENO, R. F., NEWCOMBE, R. A., STRASDAT, H., KELLY, P. H., and
DAVISON, A. J., “SLAM++: Simultaneous localisation and mapping at the level
of objects,” in The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2013.

[109] SARLETTE, A. and SEPULCHRE, R., “Consensus optimization on manifolds,” SIAM
J. Control and Optimization, vol. 48, no. 1, pp. 56–76, 2009.

[110] SEGAL, A., HAEHNEL, D., and THRUN, S., “Generalized-icp,” in Proceedings of
Robotics: Science and Systems, (Seattle, USA), June 2009.

[111] SIMONETTO, A. and LEUS, G., “Distributed maximum likelihood sensor network
localization,” IEEE Trans. Signal Processing, vol. 52, no. 6, 2014.

[112] SINGH, A., SHA, J., NARAYAN, K. S., ACHIM, T., and ABBEEL, P., “Bigbird: A
large-scale 3d database of object instances,” in 2014 IEEE International Conference
on Robotics and Automation (ICRA), pp. 509–516, May 2014.

[113] STEINBRÃIJCKER, F., STURM, J., and CREMERS, D., “Real-time visual odometry
from dense rgb-d images,” in 2011 IEEE International Conference on Computer
Vision Workshops (ICCV Workshops), pp. 719–722, Nov 2011.

135

[114] STÜCKLER, J. and BEHNKE, S., “Multi-resolution surfel maps for efficient dense
3d modeling and tracking,” J. Vis. Comun. Image Represent., vol. 25, pp. 137–147,
Jan. 2014.

[115] STURM, J., ENGELHARD, N., ENDRES, F., BURGARD, W., and CREMERS, D., “A
benchmark for the evaluation of rgb-d slam systems,” in Proc. of the International
Conference on Intelligent Robot Systems (IROS), Oct. 2012.

[116] SUGER, B., TIPALDI, G., SPINELLO, L., and BURGARD, W., “An Approach to
Solving Large-Scale SLAM Problems with a Small Memory Footprint,” in IEEE
Intl. Conf. on Robotics and Automation (ICRA), 2014.

[117] SÜNDERHAUF, N., DAYOUB, F., MCMAHON, S., TALBOT, B., SCHULZ, R.,
CORKE, P. I., WYETH, G., UPCROFT, B., and MILFORD, M., “Place categorization
and semantic mapping on a mobile robot,” CoRR, vol. abs/1507.02428, 2015.

[118] SÜNDERHAUF, N., DAYOUB, F., SHIRAZI, S., UPCROFT, B., and MILFORD,
M., “On the performance of convnet features for place recognition,” CoRR,
vol. abs/1501.04158, 2015.

[119] SÜNDERHAUF, N., PHAM, T., LATIF, Y., MILFORD, M., and REID, I. D., “Mean-
ingful maps - object-oriented semantic mapping,” CoRR, vol. abs/1609.07849, 2016.

[120] SÜNDERHAUF, N., SHIRAZI, S., JACOBSON, A., DAYOUB, F., PEPPERELL, E.,
UPCROFT, B., and MILFORD, M., “Place recognition with convnet landmarks:
Viewpoint-robust, condition-robust, training-free,” in Robotics: Science and Sys-
tems XI, Sapienza University of Rome, Rome, Italy, July 13-17, 2015, 2015.

[121] SZEGEDY, C., LIU, W., JIA, Y., SERMANET, P., REED, S., ANGUELOV, D., ER-
HAN, D., VANHOUCKE, V., and RABINOVICH, A., “Going deeper with convolu-
tions,” CoRR, vol. abs/1409.4842, 2014.

[122] TATENO, K., TOMBARI, F., and NAVAB, N., “When 2.5d is not enough: Simulta-
neous reconstruction, segmentation and recognition on dense slam,” in 2016 IEEE
International Conference on Robotics and Automation (ICRA), pp. 2295–2302, May
2016.

[123] THRUN, S., BURGARD, W., and FOX, D., Probabilistic Robotics. The MIT press,
Cambridge, MA, 2005.

[124] THRUN, S. and LIU, Y., “Multi-robot SLAM with sparse extended information
filters,” in Proceedings of the 11th International Symposium of Robotics Research
(ISRR’03), (Sienna, Italy), Springer, 2003.

[125] THUNBERG, J., MONTIJANO, E., and HU, X., “Distributed attitude synchronization
control,” in IEEE Conf. on Decision and Control, 2011.

136

[126] TODESCATO, M., CARRON, A., CARLI, R., and SCHENATO, L., “Distributed lo-
calization from relative noisy measurements: a robust gradient based approach,” in
European Control Conference, 2015.

[127] TREVOR, A. J. B., ROGERS III, J. G., and CHRISTENSEN, H. I., “Planar surface
SLAM with 3D and 2D sensors,” in IEEE Intl. Conf. on Robotics and Automation
(ICRA), (St. Paul, MN), IEEE, May 2012.

[128] TREVOR, A., ROGERS, J., and CHRISTENSEN, H., “Omnimapper: A modular mul-
timodal mapping framework,” in IEEE International Conference on Robotics and
Automation (ICRA), 2014.

[129] TREVOR, A. J. B., GEDIKLI, S., RUSU, R. B., and CHRISTENSEN, H. I., “Effi-
cient organized point cloud segmentation with connected components,” in Semantic
Perception Mapping and Exploration (SPME), May 2013.

[130] TRON, R., AFSARI, B., and VIDAL, R., “Intrinsic consensus on SO(3) with almost
global convergence,” in IEEE Conf. on Decision and Control, 2012.

[131] TRON, R., AFSARI, B., and VIDAL, R., “Riemannian consensus for manifolds with
bounded curvature,” IEEE Trans. on Automatic Control, 2012.

[132] TRON, R. and VIDAL, R., “Distributed image-based 3-D localization in camera
networks,” in IEEE Conf. on Decision and Control, 2009.

[133] VALENTIN, J., VINEET, V., CHENG, M.-M., KIM, D., SHOTTON, J., KOHLI, P.,
NIESSNER, M., CRIMINISI, A., IZADI, S., and TORR, P., “Semanticpaint: Interac-
tive 3D labeling and learning at your fingertips,” ACM Trans. Graph., vol. 34, no. 5,
pp. 154:1–154:17, 2015.

[134] VINEET, V., MIKSIK, O., LIDEGAARD, M., NIEÃ§NER, M., GOLODETZ, S.,
PRISACARIU, V. A., KÃĎHLER, O., MURRAY, D. W., IZADI, S., PÃL’REZ, P.,
and TORR, P. H. S., “Incremental dense semantic stereo fusion for large-scale se-
mantic scene reconstruction,” in 2015 IEEE International Conference on Robotics
and Automation (ICRA), pp. 75–82, May 2015.

[135] WEI, M., ARAGUES, R., SAGUES, C., and CALAFIORE, G., “Noisy range network
localization based on distributed multidimensional scaling,” IEEE Sensors Journals,
vol. 15, no. 3, pp. 854–874, 2015.

[136] WEISE, T., WISMER, T., LEIBE, B., and GOOL, L. V., “In-hand scanning with on-
line loop closure,” in 2009 IEEE 12th International Conference on Computer Vision
Workshops, ICCV Workshops, pp. 1630–1637, Sept 2009.

[137] WHELAN, T., MCDONALD, J. B., KAESS, M., FALLON, M. F., JOHANNSSON,
H., and LEONARD, J. J., “Kintinuous: Spatially extended Kinect-Fusion,” in RSS
Workshop on RGB-D: Advanced Reasoning with Depth Cameras, (Sydney, Aus-
tralia), July 2012.

137

[138] WHELAN, T., SALAS-MORENO, R. F., GLOCKER, B., DAVISON, A. J., and
LEUTENEGGER, S., “Elasticfusion: Real-time dense slam and light source estima-
tion,” Intl. J. of Robotics Research, IJRR, 2016.

[139] ZENG, A., SONG, S., NIESSNER, M., FISHER, M., XIAO, J., and FUNKHOUSER,
T., “3dmatch: Learning local geometric descriptors from rgb-d reconstructions,” in
CVPR, 2017.

[140] ZHAO, L., HUANG, S., and DISSANAYAKE, G., “Linear SLAM: A linear solution
to the feature-based and pose graph SLAM based on submap joining,” in IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2013.

[141] ZHOU, B., KHOSLA, A., LAPEDRIZA, À., OLIVA, A., and TORRALBA, A., “Ob-
ject detectors emerge in deep scene cnns,” CoRR, vol. abs/1412.6856, 2014.

[142] ZHOU, B., LAPEDRIZA, À., XIAO, J., TORRALBA, A., and OLIVA, A., “Learning
deep features for scene recognition using places database,” in Advances in Neural
Information Processing Systems 27: Annual Conference on Neural Information Pro-
cessing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pp. 487–
495, 2014.

[143] ZHOU, K., GONG, M., HUANG, X., and GUO, B., “Data-parallel octrees for sur-
face reconstruction,” IEEE Transactions on Visualization and Computer Graphics,
vol. 17, pp. 669–681, May 2011.

[144] ZHOU, X. and ROUMELIOTIS, S., “Multi-robot SLAM with unknown initial cor-
respondence: The robot rendezvous case,” in IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), pp. 1785–1792, IEEE, 2006.

138

