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Abstract. We propose a multi robot SLAM approach that uses 3D ob-
jects as landmarks for localization and mapping. The approach is fully
distributed in that the robots only communicate during rendezvous and
there is no centralized server gathering the data. Moreover, it leverages
local computation at each robot (e.g., object detection and object pose
estimation) to reduce the communication burden. We show that object-
based representations reduce the memory requirements and information
exchange among robots, compared to point-cloud-based representations;
this enables operation in severely bandwidth-constrained scenarios. We
test the approach in simulations and field tests, demonstrating its advan-
tages over related techniques: our approach is as accurate as a centralized
method, scales well to large teams, and is resistant to noise.

1 Introduction

The deployment of multiple cooperative robots is an important asset for fast
information gathering over large areas. In particular, multi robot SLAM, i.e., the
cooperative construction of a model of the environment explored by the robots,
is fundamental to geo-tag sensor data (e.g., for pollution monitoring, surveillance
and search and rescue), and to gather situational awareness. In this paper we
are interested in the case in which the robots operate under severe bandwidth
constraints. In this context, the robots have to reconstruct a globally-consistent
map by communicating a small amount of information among the teammates.

Dealing with bandwidth constraints is challenging for two reasons. First,
most approaches for multi robot SLAM imply a communication burden that
grows quadratically in the number of locations co-observed by the robots [1];
these approaches are doomed to quickly hit the bandwidth constraints. In our
previous works [2, 3] we alleviated this issue by proposing an approach, based
on the distributed Gauss-Seidel method, which requires linear communication.
The second issue regards the communication cost of establishing loop closures
among robots. When the robots are not able to directly detect each other, loop
closures have to be found by comparing raw sensor data; in our setup the robots
are equipped with an RGBD camera and exchanging multiple 3D point clouds
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quickly becomes impractical in presence of communication bounds. In this paper
we address this second issue by using an object-level map representation.

Related Work. Traditional approaches for multi robot mapping use low-
level primitives like points and lines to model the geometry of the environ-
ment [4]; these maps become memory-intensive in long-term operation, contain
very redundant information (e.g., use thousands of points to represent a planar
surface), and lack semantic understanding, which is a key element in a wide range
of tasks (e.g., human robot interaction or manipulation). For these reasons, se-
mantic mapping has attracted a conspicuous interest from the community, start-
ing from early papers [5], to more recent works which use object templates [6],
door signs [7], or planes [8] for mapping. A recent survey can be found in [9]. Dis-

tributed estimation in multi robot systems is currently an active field of research,
with special attention being paid to communication constraints [10], heteroge-
neous teams [11] and robust data association [12]. The robotic literature o↵ers
distributed implementations of di↵erent estimation techniques, including Ex-
tended Kalman filters [13], information filters [14], and Gaussian elimination [1].

Contribution. In this work we advocate the use of higher-level map repre-
sentations as a tool to enable operation in bandwidth-constrained multi robot
scenarios. Maps augmented with objects provide a number of advantages: ob-
jects (including planes and other geometric shapes) can be represented in a
compact manner and provide a richer and human-understandable description of
the environment. Objects are more discriminative, which helps data association
and loop-closure detection. Finally, object representations reduce the computa-
tional complexity of SLAM by reducing the number of variables (intuitively, we
estimate the pose of few objects rather than the position of several 3D points).

We propose an approach for Multi Robot Object-based SLAM with two
distinctive features. The first is the front-end, which performs accurate object
detection using deep learning. Deep learning provides an e↵ective tool to gener-
alize early work on object-based mapping [6] to a large number of object cat-
egories. The second is the back-end, which implements distributed pose graph
optimization using the distributed Gauss-Seidel method, described in our previ-
ous work [3]. We show that the combination of these two techniques reduces the
memory requirement and information exchange among robots, allows accurate
and parsimonious large-scale mapping, and scales to large teams.

2 Technical Approach

Problem Statement. We consider a multi robot system and we denote each
robot with a Greek letter, such that the set of robots is ⌦ = {↵,�, �, . . .}. The
goal of each robot is to estimate its own trajectory and the pose of a set of
objects in the environment, using local measurements, and leveraging occasional
communication with other robots. We model each trajectory as a finite set of
poses; the pose assumed by robot ↵ at time i is denoted with x

↵i 2 SE(3); when
convenient, we write x

↵i = (R
↵i , t↵i), making explicit that each pose includes

a rotation R

↵i 2 SO(3), and a position t

↵i 2 R3. The trajectory of robot ↵ is
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x

↵

= [x
↵1 ,x↵2 , . . .]. Similarly, we denote with o

↵k 2 SE(3) the pose of the kth

object in the coordinate frame of robot ↵ (Fig. 2).

Fig. 1. Flowchart of Object based SLAM

Object detection and pose estimation. Each robot collects RGBD data
using a depth camera, and measures its ego-motion through wheel odometry.
In our approach, each RGB frame (from RGBD) is passed to the YOLO object
detector [15], which detects objects at 45 frames per second. Compared to object-
proposal-based detectors, YOLO is fast, since it avoids the computation burden
of extracting object proposals, and is less likely to produce false positives in
the background. We fine-tune the YOLO detector on a subset of objects from
the BigBird dataset [16]. The training dataset contains the object images in
a clean background taken from di↵erent viewpoints and labeled images of the
same objects taken by a robot in an indoor environment. During testing, we use
a probability threshold of 0.3 to avoid false detections.

Each detected object bounding box is segmented using the organized point

cloud segmentation [17]. The segmented object is matched to the 3D template
of the detected object class to estimate its pose. We extract PFHRGB features
[18] in the source (object segment) and target (object model) point clouds and
register the two point clouds in a Sample Consensus Initial Alignment framework
[19]. If we have at least 12 inlier correspondences, GICP (generalized iterative
closest point [20]) is performed to further refine the registration and the final
transformation is used as the object pose estimate. If less than 12 inlier corre-
spondences are found, the detection is considered to be a false positive. This
two-stage process, verifies the detection both semantically and geometrically.

Object-based SLAM. If object pose estimation is successful, it is data-
associated with other instances already present in the map by finding the ob-
ject landmark having the same category label within 2� distance of the newly
detected object. If there are multiple objects with the same label within that
distance, the newly detected object is matched to the nearest object instance. If
there exists no object having the same label, a new object landmark is created.

Before the first rendezvous event, each robot performs standard single-robot
SLAM using OmniMapper [8]. Both wheel odometry and relative pose measure-
ments to the observed objects are fed to the SLAM back-end, which is based on
pose graph optimization [3]. In particular, if object k at pose o

↵k is seen by the
robot ↵ from the pose x

↵i , then an object-pose factor is added to the graph:

f
op

(x
↵i ,o↵k , zik) / exp
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where z

ik

is the relative pose estimate returned by the object-pose estimator
described above, ⌃ 2 R6⇥6 is the corresponding covariance, and Log is the
logarithm map for SE(3). A flowchart of the SLAM approach is given in Fig. 1.

Robot Communication. During a rendezvous between robots ↵ and �,
robot ↵ communicates the category labels (class) and poses (in robot ↵’s frame)
of all the detected objects to robot �. We assume that the initial pose of each
robot is known to all the robots, hence, given the initial pose of robot ↵, robot
� is able to transform the communicated object poses from robot ↵’s frame to
its own frame.4 For each object in the list communicated by robot ↵, robot �
finds the nearest object in its map, having the same category label and within
2� distance. If such an object exists, it is added to the list of shared objects: this
is the set of objects seen by both robots.

Fig. 2. Factor graph representation of Multi-Robot Object based SLAM. x↵i and x�i

denote the poses assumed by robot ↵ and � at time i respectively. The pose of the
kth object in the coordinate frame of robot ↵ and � is denoted with o↵k and o�k

respectively. Green dots shows inter-robot factors whereas orange and purple dots
shows intra-robot factors.

The list of shared objects contains pairs (o
↵k ,o�l) and informs the robots

that the poses o
↵k and o

�l correspond to the same physical object, observed by
the two robots. For this reason, in the optimization we enforce that the relative
pose between o

↵k and o

�l is zero. We do that by adding an object-object factor
to the pose graph for each pair (o

↵k ,o�l) in the shared object list:

f
oo

(o
�l ,o↵k) / exp
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kLog
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o
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�l
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⌘
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⇤

◆

where ⇤ 2 R6⇥6 specifies the confidence in the data association among the shared
set of objects. We remark that, while before the first rendezvous the robots ↵ and
4 The knowledge of the initial pose is only used to facilitate data association but it is
not actually used during pose graph optimization. We believe that this assumption
can be easily relaxed but for space reasons we leave this task to future work.
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� have di↵erent reference frames, the object-object factors enforce both robots
to have a single shared reference frame, facilitating future data association.

Distributed Optimization. Overall, our approach uses two types of mea-
surements: intra-robot and inter-robot measurements. The intra-robot measure-

ments consists of the odometry measurements which constrain consecutive robot
poses (e.g., x

↵i and x

↵i+1) and pose-object measurements which constrains robot
poses with the corresponding visible object landmarks (e.g., x

↵i and o

↵k). The
inter-robot measurements are the ones relating the objects observed by di↵erent
robots. According to our previous terminology, an inter-robot measurement is
associated to each pair in the shared object list. Fig. 2 shows the pose graph con-
taining intra and inter-robot measurements. Given these measurements, we use
the distributed Gauss-Seidel (DGS) algorithm [3] to estimate the 3D trajectories
of the robots along with the poses of the observed objects.

3 Results

We evaluate our approach in large simulations (Section 3.1) and field tests (Sec-
tion 3.2). The results demonstrate that the proposed approach is accurate, scal-
able, robust to noise, and requires less memory and communication bandwidth.

We evaluate the accuracy of our approach by comparing it against the stan-
dard centralized Gauss-Newton method [21]. In particular, we use three accu-
racy metrics: (i) the cost at the final estimate, (ii) the average translation error
(ATE*) and (iii) average rotation error (ARE*) of the robot and landmark poses.

Average Translation error (ATE*). Similar to the formulation by Sturm
et al. [22], the average translation error measures the absolute distance between
the trajectory and object poses estimated by our approach versus the centralized
Gauss-Newton (GN) method. The trajectory ATE* is defined as follows:

ATE⇤ =

 
1P

↵2⌦

n
↵

X

↵2⌦

n↵X

i=1

kt
↵i � t

⇤
↵i
k2
! 1

2

(1)

where t
↵i is the position estimate for robot ↵ at time i, t⇤

↵i
is the corresponding

estimate from GN, and n
↵

is the number of poses in the trajectory of ↵. A
similar definition holds for the object positions.

Average Rotation error (ARE*). The average rotation error is com-
puted by evaluating the angular mismatch between the (trajectory and objects)
rotations produced by the proposed approach versus a centralized GN method:

ARE⇤ =

 
1P

↵2⌦

n
↵

X

↵2⌦

n↵X

i=1

kLog
�
(R⇤

↵i
)TR

↵i

�
k2
! 1

2

(2)

whereR
↵i is the rotation estimate for robot ↵ at time i,R⇤

↵i
is the corresponding

estimate from GN. A similar definition holds for the object rotations.
Our approach is based on the DGS method and is iterative in nature. There-

fore, its accuracy depends on the number of iterations, which in turns depends
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25 Chairs Scene House Scene

Fig. 3. Shows the screenshot of 25 Chair and House scenarios simulated in Gazebo.

on the choice of the stopping conditions, see [3] for details. In the following, we
present results for two di↵erent choices of the stopping condition ⌘.

3.1 Simulation Experiments

In this section we characterize the performance of the proposed approach in
terms of scalability in the number of robots and sensitivity to noise. We test the
approach in two scenarios (a) 25 Chairs and (b) House, which we simulated in
Gazebo. In the 25 Chairs scenario, we placed 25 chairs as objects on a grid, with
each chair placed at a random angle. In the House scenario, we placed furniture
as objects in order to simulate an indoor living room environment. Fig. 3 shows
the two scenarios. Unless specified otherwise, we generate measurement noise
from a zero-mean Gaussian distribution with standard deviation �

R

= 5� for
the rotations and �

t

= 0.2m for the translations. Six robots are used by default.
Results are averaged over 10 Monte Carlo runs.

Figs. 4 show the comparison between the object locations and trajectories
estimated using multi-robot mapping and centralized mapping for two scenarios.
Videos showing the map building for the two scenarios are available at: https:
//youtu.be/nXJamypPvVY and https://youtu.be/nYm2sSHuGjo.

#Robots

Distributed Gauss-Seidel Centralized ATE* (m) ARE* (deg)

⌘=10�1 ⌘=10�2 GN
Poses Lmrks. Poses Lmrks.

#Iter Cost #Iter Cost Cost

2 5.0 56.1 9.0 56.0 54.7 1.5e-03 8.0e-04 2.1e-01 2.8e-01

4 5.0 118.0 8.0 117.9 113.8 9.7e-04 7.5e-04 2.0e-01 2.8e-01

6 5.0 166.6 7.0 166.5 160.9 3.1e-03 2.1e-03 3.3e-01 4.0e-01

Table 1. Number of iterations, cost, ATE* and ARE* of our approach as compared to
centralized Gauss-Newton method for increasing number of robots. ATE* and ARE*
are measured using ⌘=10�1 as stopping condition.
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Centralized Distributed

Fig. 4. Shows the trajectories of the six robots and object locations (shows as dots)
estimated using centralized mapping and multi-robot mapping for 25 Chairs (top) and
House scenario (bottom).

Accuracy in the Number of Robots. Table 1 reports the number of
iterations and our accuracy metrics (cost, ATE*, ARE*) for increasing number
of robots. The table confirms that the distributed approach is nearly as accurate
as the centralized Gauss-Newton method and the number of iterations does not
increase with increasing number of robots, making our approach scalable to large
teams. Usually, few tens of iterations su�ce to reach an accurate estimate.

Measurement Distributed Gauss-Seidel Centralized ATE* (m) ARE* (deg)

noise ⌘=10�1 ⌘=10�2 GN
Poses Lmrks. Poses Lmrks.

�r(
�) �t(m) #Iter Cost #Iter Cost Cost

1 0.1 5.0 12.7 6.0 12.7 12.5 1.8e-04 1.3e-04 7.5e-02 9.0e-02

5 0.1 5.0 166.6 7.0 166.5 160.9 3.1e-03 2.1e-03 3.3e-01 4.0e-01

10 0.2 5.0 666.2 8.0 665.9 643.4 1.3e-02 8.8e-03 6.7e-01 8.1e-01

15 0.3 6.0 1498.3 10.0 1497.8 1447.2 3.0e-02 2.1e-02 1.0e+00 1.2e+00

Table 2. Number of iterations, cost, ATE* and ARE* of our approach as compared
to centralized Gauss-Newton approach for increasing measurement noise. ATE* and
ARE* are measured using ⌘=10�1 as stopping condition.
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Fig. 5. Objects from BigBird dataset used in Field Experiments

Fig. 6. (Left) Clearpath Jackal robot used for the field tests: platform and sensor
layout; (right) snapshot of the test facility and the Jackal robots.

Sensitivity to Measurement Noise. We further test the accuracy of our
approach by evaluating the number of iterations, the cost, the ATE* and the
ARE* for increasing levels of noise. Table 2 shows that our approach is able to
replicate the accuracy of the centralized Gauss-Newton method, regardless of
the noise level.

3.2 Field Experiments

We tested our approach on field data collected by two Jackal robots (Fig. 6)
moving in a MOUT (Military Operations in Urban Terrain) facility. We scattered
the environment with a set of objects from the BigBird dataset [16], shown
in Fig. 5. Each robot is equipped with an Asus Xtion sensor and uses wheel
odometry to measure its ego-motion.

We evaluated our approach in two di↵erent scenarios, the stadium and the
house. We did two runs inside the stadium (Stadium-1 & Stadium-2) and one
run in the house with objects randomly spread along the robot trajectories.
Stadium scenario datasets were collected in an indoor basketball stadium with
the robot trajectories bounded in a roughly rectangular area. House scenario
dataset was collected around the living room and kitchen area of a house.

Object Detection. We used 12 objects from the BigBird dataset in all three
runs. The two-stage process of object detection (semantic verification) followed
by pose estimation (geometric verification) ensured that we do not add false
positive detections. Our current distributed optimization technique (DGS) is
not robust to outliers. The detection thresholds can be further relaxed when
using robust pose graph optimization techniques.
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Fig. 7. Shows YOLO object detection snapshots in three di↵erence scenes, (l to r)
stadium, house, UW scene 2.

In the first run (Stadium-1), 6 objects were added to the map out of 12
objects kept in the environment. Similarly 5 objects were detected in the other
two runs. Fig. 7 shows the bounding box snapshots of the detected object in
three di↵erent scenes. Videos showing YOLO object detection results on UW
Scenes2 dataset [23] is available at https://youtu.be/urZiIJK2IYk and https:
//youtu.be/-F6JpVmOrc0.

Scenario

Avg. Per-Robot Avg. Comm.

Memory Req. (MB) Bandwidth Req. (MB)

PCD Obj PCD Obj

Stadium-1 1.2e+03 1.9e+00 1.9e+01 1.5e-05

Stadium-2 1.4e+03 1.9e+00 1.4e+01 1.1e-05

House 2.1e+03 1.9e+00 1.6e+01 1.3e-05
Table 3. Memory and communication requirements for our object based approach
(Obj) as compared to Point cloud based approach (PCD) on field data.

Memory Requirements. Table 3 compares the average memory require-
ment per robot to store a dense point cloud map (PCD) with respect to storing
a object-based map (Obj). The table also compares the average communication
requirements in the case of dense point cloud map and object-based map.

Per-robot memory requirement in the case of dense point cloud is computed
as n

f

KC where n
f

is the number of frames, K is the number of points per
frame and C is the memory required to store each point. In the case of object
level map, it is computed as n

o

PC where n
o

is the number of object models and
P is the average number of points in each object model. Table 3 shows that,
as expected, the per-robot memory requirement is orders of magnitude smaller
with our object-based map as compared to point-cloud-based maps.

When using point clouds, the robots are required sending at least one frame
at every rendezvous to estimate their relative pose. So the average communica-
tion for dense point cloud map is computed as n

c

KC where n
c

is the number of
rendezvous, K is the number of points per frame and C is the memory required
to send each point. Communication in the case of our object-based map requires
sending object category and object pose; a upper bound can be computed as
n
o

L where n
o

is the number of objects and L is the memory required to store
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Centralized Distributed Centralized Distributed Centralized Distributed

Stadium-1 Stadium-2 House

Fig. 8. Field tests: estimated trajectories for the our algorithm (distributed Gauss-
Seidel) and for the centralized Gauss-Newton method [21]. Trajectories of the two
robots are shown in red and blue.

category label and pose of an object. Table 3 confirms that our approach pro-
vides a remarkable advantage in terms of communication burden as it requires
transmitting 6 orders of magnitude less than a point-cloud-based approach.

Scenario

Initial Distributed Gauss-Seidel Centralized ATE (m) ARE (deg)

⌘r=⌘p=10�1 ⌘r=⌘p=10�2 GN
Poses Lmrks. Poses Lmrks.

Cost #Iter Cost #Iter Cost Cost

Stadium-1 120.73 5.0 1.1e-09 5.0 1.1e-09 1.6e-10 1.9e-10 1.9e-10 1.4e-03 1.2e-04

Stadium-2 310.24 5.0 4.5e-12 8.0 4.4e-12 3.5e-13 2.1e-03 2.2e-03 1.2e-02 1.4e-02

House 43.59 5.0 1.1e-03 6.0 1.0e-03 8.4e-04 4.4e-02 6.2e-02 4.3e-01 4.9e-01

Table 4. Number of iterations, cost, ATE* and ARE* of our approach as compared
to centralized Gauss-Newton method for Field data

Accuracy. Fig. 8 shows the trajectories of the two robots in three runs. The
figure compares our approach and the corresponding centralized estimate. Quan-
titative results are given in Table 3 and Table 4, which reports the cost attained
by the our approach, the number of iterations, ATE*, ARE* as compared to
the centralized approach. The table confirms that the distributed approach is
nearly as accurate as the centralized Gauss-Newton method and requires very
few iterations to compute a good estimate.

4 Main Experimental Insights

In our previous work [3], we proposed a distributed Gauss-Seidel method, which
reduces the communication burden of distributed SLAM from quadratic to linear
in the number of locations co-observed by the robots. However, the work [3], as
most related works, requires the exchange of point clouds among the robots,
to estimate relative poses during rendezvous. This communication burden is
unnecessary, as it leads to exchanging a large amount of uninformative points,
and quickly becomes impractical in presence of bandwidth constraints.

In this paper we address this issue by using an object-based representa-
tion. Objects provide a suitable abstraction level, and provide a natural tool to
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compress large point clouds into a semantically meaningful compact representa-
tion. In our system, the robots perform local computation to detect objects and
compute their pose. We leverage recent progress in object detection using deep
learning: this allows us to reliably detect objects in RGB images at high frame
rate. Then, during rendezvous the robots only need to exchange the observed
object instances and the measured object poses. This allows the robots to greatly
minimize the amount of data exchanged with the teammates.

Experimental evidence shows that our approach leads to a remarkable reduc-
tion in the memory footprint (3 orders of magnitude less) and in the communi-
cation requirements (6 orders of magnitude less communication), enabling op-
eration in severely bandwidth-constrained scenarios. The experiments also show
that our object-based distributed SLAM approach is as accurate as a standard
centralized solver and is able to tolerate a large amount of measurement noise.

5 Conclusions and Future Work

We proposed a Multi Robot Object-based SLAM approach that uses object
landmarks in a multi robot mapping framework. We showed that this approach
(i) reduces the memory requirement and information exchange among robots,
(ii) is as accurate as the centralized estimate, (iii) scales well to large number of
robots and (iv) is resistant to noise.

Our current approach assumes that a model of each observed objects is known
in advance. However it can be challenging to store a large number of object
models, and to account for intra-class variations. As a future work, we plan to
extend our approach to the case where object models are not previously known
(at an instance level) and instead object shapes are jointly optimized within our
SLAM framework. Another future direction is to improve the robustness of the
current pipeline using a distributed algorithm for outlier rejection.
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