
Distributed Trajectory Estimation with Privacy and Communication
Constraints: a Two-Stage Distributed Gauss-Seidel Approach

Siddharth Choudhary, Luca Carlone, Carlos Nieto, John Rogers, Henrik I. Christensen, Frank Dellaert

Abstract— We propose a distributed algorithm to estimate
the 3D trajectories of multiple cooperative robots from relative
pose measurements. Our approach leverages recent results [1]
which show that the maximum likelihood trajectory is well
approximated by a sequence of two quadratic subproblems.
The main contribution of the present work is to show that these
subproblems can be solved in a distributed manner, using the
distributed Gauss-Seidel (DGS) algorithm. Our approach has
several advantages. It requires minimal information exchange,
which is beneficial in presence of communication and privacy
constraints. It has an anytime flavor: after few iterations the
trajectory estimates are already accurate, and they asymp-
totically convergence to the centralized estimate. The DGS
approach scales well to large teams, and it has a straightforward
implementation. We test the approach in simulations and field
tests, demonstrating its advantages over related techniques.

I. INTRODUCTION

The use of multiple cooperative robots has the potential to
enable fast information gathering, and more efficient cover-
age and monitoring of large areas. For military applications,
multi robot systems promise more efficient operation and im-
proved robustness to adversarial attacks. In civil applications
(e.g., pollution monitoring, surveillance, search and rescue),
the use of several inexpensive, heterogeneous, agile platforms
is an appealing alternative to monolithic single robot systems.

The deployment of multi robot systems in the real world
poses many technical challenges, ranging from coordination
and formation control, to task allocation and distributed
sensor fusion. In this paper we tackle a specific instance
of the sensor fusion problem. We consider the case in which
a team of robots explores an unknown environment and each
robot has to estimate its trajectory from its own sensor data
and leveraging information exchanged with the teammates.
Trajectory estimation constitutes the backbone for many es-
timation and control tasks (e.g., geo-tagging sensor data, 3D
map reconstruction, position-aware task allocation). Indeed,
in our application, trajectory estimation enables distributed
3D reconstruction and localization (Fig. 1).

We consider a realistic scenario, in which the robots
only communicate when they are within a given distance.
Moreover, also during a rendezvous (i.e., when the robots are
close enough to communicate) they cannot exchange a large
amount of information, due to bandwidth constraints. We aim

S. Choudhary, C. Nieto, H.I. Christensen, and F. Dellaert are with the
College of Computing, Georgia Institute of Technology, USA, {sid-
dharth.choudhary, carlos.nieto}@gatech.edu, {hic, dellaert}@cc.gatech.edu

L. Carlone is with the Laboratory for Information & Decision Systems,
Massachusetts Institute of Technology, USA, lcarlone@mit.edu

J. Rogers is with U.S. Army Research Laboratory (ARL), USA,
john.g.rogers59.civ@mail.mil

This work was partially funded by the ARL MAST CTA Project 1436607.

Fig. 1. In our field experiments, distributed trajectory estimation enables
3D reconstruction of an entire building using two robots (red, blue). Each
column of the figure shows the reconstructed point cloud of a floor (top),
and the estimated trajectories overlaid on an occupancy grid map (bottom).

at designing a technique that allows each robot to estimate its
own trajectory, while asking for minimal knowledge of the
trajectory of the teammates. This “privacy constraint” has a
clear motivation in a military application: in case one robot
is captured, it cannot provide sensitive information about
the areas covered by the other robots. Similarly, in civilian
applications, one may want to improve the localization of a
device (e.g., a smart phone) by exchanging information with
other devices, while respecting users’ privacy.

Related work in robotics. Distributed estimation in multi
robot systems is an active field of research, with special
attention being paid to communication constraints [2], het-
erogeneity [3], [4], consistency [5], and robust data associ-
ation [6]. Robotic literature offers distributed implementa-
tions of different estimation techniques, including Extended
Kalman filters [7], information filters [8], and particle fil-
ters [9], [10]. More recently, the community reached a
large consensus on the use of maximum likelihood (ML)
estimation, which, applied to trajectory estimation, is often
referred to as pose graph optimization. ML estimators cir-
cumvent well-known issues of Gaussian filters (e.g., build-
up of linearization errors) and particle filters (e.g., particle
depletion), and frame the estimation problem in terms of
nonlinear optimization. In multi robot systems, ML trajectory
estimation can be performed by collecting all measurements



at a centralized inference engine, which performs the opti-
mization [11], [12], [3], [13], [6].

In many applications, it is not practical to collect all
measurements at a single inference engine. When operating
in hostile environment, a single attack to the centralized
inference engine (e.g., one of the robot) may threaten the op-
eration of the entire team. Moreover, the centralized approach
requires massive communication and large bandwidth. Fur-
thermore, solving trajectory estimation over a large team of
robots can be too demanding for a single computational unit.
Finally, the centralized approach poses privacy concerns as
it requires to collect all information at a single robot.

These reasons triggered interest towards distributed tra-
jectory estimation, in which the robots only exploit local
communication, in order to reach a consensus on the tra-
jectory estimate. Nerurkar et al. [14] propose an algorithm
for cooperative localization based on distributed conjugate
gradient. Franceschelli and Gasparri [15] propose a gossip-
based algorithm for distributed pose estimation and investi-
gate its convergence in a noiseless setup. Aragues et al. [16]
use a distributed Jacobi approach to estimate a set of 2D
poses. Knuth and Barooah [17] estimate 3D poses using
distributed gradient descent. Cunnigham et al. [18], [19] use
Gaussian elimination, and develop an approach, called DDF-
SAM, in which robots exchange Gaussian marginals over
the separators (variables observed by multiple robots).

While Gaussian elimination has become a popular ap-
proach, it has two major shortcomings. First, the marginals
to be exchanged among the robots are dense, hence the
communication cost is quadratic in the number of separators.
This motivated the use of sparsification techniques [2].
Second, Gaussian elimination is performed on a linearized
version of the problem, hence these approaches require
good linearization points and complex bookkeeping to ensure
consistent linearization across the robots [19].

Related work in other communities. Distributed position
and orientation estimation is a fertile research area in other
communities, including sensor networks, computer vision,
and multi agent systems. In these fields, the goal is to esti-
mate the current state of an agent (e.g., a sensor or a camera)
from relative measurements between the agents. A large
body of literature deals with distributed localization from
distance measurements (e.g., [20], [21]). The case of position
estimation from linear measurements is considered in [22],
[23], [24], [25]; the related problem of centroid estimation is
tackled in [26]. Distributed rotation estimation has been stud-
ied in the context of attitude synchronization [27], camera
network calibration [28], sensor network localization [29],
and distributed consensus on manifolds [30].

Contribution. We consider a distributed ML trajectory es-
timation problem in which the robots have to collaboratively
estimate their trajectories while minimizing the amount of
exchanged information. We focus on a fully 3D case, as this
setup is of great interest in many robotics applications (e.g.,
navigation on uneven terrain, UAVs). We also consider a
fully distributed setup, in which the robots can communicate
and acquire relative measurements only during rendezvous
events. Our approach can be understood as a distributed

Fig. 2. An instance of multi robot trajectory estimation: two robots (α in
blue, and β in dark green) traverse and unknown environment, collecting
intra-robot measurements (solid black lines). During rendezvous, each robot
can observe the pose of the other robot (dotted red lines). These are called
inter-robot measurements and relate two separators (e.g., xαi ,xβj ). The
goal of the two robots is to compute the ML estimate of their trajectories.

implementation of the chordal initialization discussed in [1].
The chordal initialization [1] (recalled in Section III) consists
in approximating the ML trajectory estimate by solving
two quadratic optimization subproblems. The insight of
the present work is that these quadratic subproblems can
be solved in a distributed fashion, leveraging distributed
linear system solvers. In particular, we use a distributed
Gauss-Seidel algorithm, with flagged-initialization [23]. Our
approach has many practical advantages. The amount of
communication required at each iteration is linear in the
number of separators. It does not require linearization points.
It quickly converges to the centralized estimate. It scales
well to large teams. Moreover, upon convergence, it returns
the same estimate of the chordal initialization [1], which
has been extensively shown to be accurate and resilient to
large measurement noise. We test the two-stage distributed
Gauss-Seidel approach in both simulations and field tests,
demonstrating that it is accurate and more parsimonious,
communication-wise, than related techniques.

II. PROBLEM STATEMENT: MULTI ROBOT
TRAJECTORY ESTIMATION

We consider a multi robot system and we denote each
robot with a Greek letter, such that the set of robots is
Ω = {α, β, γ, . . .}. The goal of each robot is to estimate
its own trajectory using the available measurements, and
leveraging occasional communication with other robots. The
trajectory estimation problem and the nature of the available
measurements are made formal in the rest of this section.

We model each trajectory as a finite set of poses (triangles
in Fig. 2); the pose assumed by robot α at time i is denoted
with xαi (we use Roman letters to denote time indices). We
consider a 3D setup, i.e., xαi ∈ SE(3); when convenient,
we write xαi = (Rαi , tαi), making explicit that each pose
includes a rotation Rαi ∈ SO(3), and a position tαi ∈ R3.
The trajectory of robot α is xα = [xα1

,xα2
, . . .].

Measurements. We assume that each robot acquires rel-
ative pose measurements. In practice these are obtained by
post-processing raw sensor data (e.g., scan matching on 3D
laser scans). We consider two types of measurements: intra-
robot and inter-robot measurements. The intra-robot mea-
surements involve the poses of a single robot at different time
instants; common examples of intra-robot measurements are
odometry measurements (which constrain consecutive robot
poses, e.g., xαi and xαi+1

in Fig. 2) or loop closures
(which constrain non-consecutive poses, e.g., xαi−1

and
xαi+1 in Fig. 2). The inter-robot measurements are the ones



relating the poses of different robots. For instance, during
a rendezvous, robot α (whose local time is i), observes a
second robot β (whose local time is j) and uses on-board
sensors to measure the relative pose of the observed robot in
its own reference frame. Therefore, robot α acquires an inter-
robot measurement, describing the relative pose between xαi
and xβj (red links in Fig. 2). We use the term separators to
refer to the poses involved in an inter-robot measurement.

While our classification of the measurements (inter vs
intra) is based on the robots involved in the measurement
process, all relative measurements can be framed within the
same measurement model. Since all measurements corre-
spond to noisy observation of the relative pose between a pair
of poses, say xαi and xβj , a general measurement model is:

z̄αiβj
.
= (R̄αi

βj
, t̄αiβj ), with:

{
R̄αi
βj

= (Rαi)
TRβjRε

t̄αiβj = (Rαi)
T(tβj−tαi)+tε

(1)
where the relative pose measurement z̄αiβj includes the rela-
tive rotation measurements R̄αi

βj
, which describes the attitude

Rβj in the reference frame of robot α at time i, “plus” a
random rotation Rε (measurement noise), and the relative
position measurement t̄αiβj , which describes the position tβj
in the reference frame of robot α at time i, plus noise tε.
According to our definition, intra robot measurements are in
the form z̄αiαk , for some robot α and for i 6= k; inter-robot
measurements are in the form z̄αiβj for two robots α 6= β.

In the following, we denote with EαI the set of intra-
robot measurements for robot α, while we call EI the set
of intra-robot measurements for all robots in the team,
i.e., EI = ∪α∈ΩEαI . The set of inter-robot measurements
involving robot α is denoted with EαS (S is the mnemonic for
“separator”). The set of all inter-robot measurements is ES .
The set of all available measurements is then E = EI ∪ ES .

ML Trajectory estimation. Let us collect all robot tra-
jectories in a single (to-be-estimated) set of poses x =
[xα ,xβ ,xγ , . . .]. The ML estimate for x is defined as the
maximum of the measurement likelihood:

x? = arg max
x

∏
(αi,βj)∈E

L(z̄αiβj | x) (2)

where we assumed independent measurements. The expres-
sion of the likelihood function depends on the distribution
of the measurements noise, i.e., Rε, tε in (1). We follow the
path of [31] and assume that translation noise is distributed
according to a zero-mean Gaussian with information matrix
ω2
t I3, while the rotation noise follows a Von-Mises distribu-

tion with concentration parameter ω2
R.

Under these assumptions, it is possible to demonstrate [31]
that the ML estimate x .

= {(Rαi , tαi),∀α ∈ Ω,∀i} can be
computed as solution of the following optimization problem:

min
tαi∈R

3

Rαi∈SO(3)
∀α∈Ω,∀i

∑
(αi,βj)∈E

ω2
t

∥∥∥tβj−tαi−Rαi t̄
αi
βj

∥∥∥2+ω2
R

2

∥∥∥Rβj−RαiR̄
αi
βj

∥∥∥2
F

(3)
In (3), we use of the chordal distance ‖Rβj−RαiR̄

αi
βj
‖F to

quantify rotation errors, while the majority of related works
in robotics uses the geodesic distance [1].

A centralized approach to solve the multi robot PGO prob-
lem (3) works as follows. A robot collects all measurements
E . Then, the optimization problem (3) is solved using itera-
tive optimization on manifold [32] or fast approximations [1].

In this paper we consider the more interesting case in
which it is not possible to collect all measurements at a
centralized estimator. This problem can be stated as follows.

Problem 1 (Distributed Trajectory Estimation): Design
an algorithm that each robot α executes during a rendezvous
with a subset of other robots Ωr ⊆ Ω \ {α}, and that
• takes as input: (i) the intra-robot measurements EαI and

(ii) the subset of inter-robot measurements EαS , (iii)
partial estimates of the trajectories of robots β ∈ Ωr;

• returns as output: the ML estimate x?α, which is such
that x? = [x?α ,x

?
β ,x

?
γ , . . .] is a minimizer of (3).

Note that, while the measurements EαI and EαS are known
by robot α, gathering the estimates from robots β requires
communication, hence we want our distributed algorithm to
exchange a very small portion of the trajectory estimates.

The next section presents our solution to Problem 1.

III. TWO-STAGE DISTRIBUTED TRAJECTORY
ESTIMATION

The present work is based on two key observations. The
first one is that the optimization problem (3) has a quadratic
objective; what makes (3) hard is the presence of non-
convex constraints, i.e., Rαi ∈ SO(3). Therefore, as already
proposed in [1] (for the single robot, centralized case), we
use a two-stage approach: we first solve a relaxed version
of (3) and get an estimate for the rotations Rαi of all robots,
and then we recover the full poses and top-off the result with
a Gauss-Newton (GN) iteration. The second key observation
is that each of these two stages can be solved in distributed
fashion, exploiting existing distributed linear system solvers.
We propose the use of a Distributed Gauss-Seidel algorithm.

To help readability, we start with a centralized description
of the approach, which is an adaptation of the chordal
initialization of [1] to the multi robot case. Then we tailor
the discussion to the distributed setup in Section III-B.

A. Trajectory Estimation: Centralized Description
The approach proceeds in two stages. The first stage solves

for the unknown rotations of the robots by solving a relaxed
problem. The second recovers the full poses via a single GN
iteration. The two stages are detailed in the following.

Stage 1: rotation initialization via relaxation and pro-
jection. The first stage computes a good estimate of the
rotations of all robots by solving the following subproblem:

min
Rαi∈SO(3)
∀α∈Ω,∀i

∑
(αi,βj)∈E

ω2
R

∥∥∥Rβj−RαiR̄
αi
βj

∥∥∥2
F

(4)

which amounts to estimating the rotations of all robots in the
team by considering only the relative rotation measurements
(the second summand in (3)).

While problem (4) is nonconvex (due to the nonconvex
constraints Rαi ∈ SO(3)), many algorithms to approximate
its solution are available in literature. Here we use the
approach proposed in [33] and reviewed in [1]. The approach



first solves the quadratic relaxation obtained by dropping
the constraints Rαi ∈ SO(3), and then projects the relaxed
solution to SO(3). In formulas, the quadratic relaxation is:

min
Rαi ,∀α∈Ω,∀i

∑
(αi,βj)∈E

ω2
R

∥∥∥Rβj−RαiR̄
αi
βj

∥∥∥2
F

(5)

which simply rewrites (4) without the constraints. Since (5)
is quadratic in Rαi ,∀α ∈ Ω,∀i, we can rewrite it as:

min
r
‖Arr − br‖2 (6)

where we stacked all the entries of the unknown rotation
matrices Rαi ,∀α ∈ Ω,∀i into a single vector r, and we built
the (known) matrix Ar and (known) vector br accordingly
(the presence of a nonzero vector br follows from setting one
of the rotations to be the reference frame, e.g., Rα1

= I3).
Since (5) is a linear least-squares problem, its solution can

be found by solving the normal equations:

(AT
rAr)r = AT

r br (7)

Let us denote with r̆ the solution of (7). Rewriting r̆ in
matrix form, we obtain the matrices R̆αi , ∀α ∈ Ω,∀i. Since
these rotations were obtained from a relaxation of (4), they
are not guaranteed to satisfy the constraints Rαi ∈ SO(3);
therefore the approach [33] projects them to SO(3), and gets
the rotation estimate R̂αi = project(R̆αi), ∀α ∈ Ω,∀i.
The projection only requires to perform an SVD of R̆αi and
can be performed independently for each rotation [1].

Stage 2: full pose recovery via single GN iteration. In
the previous stage we obtained an estimate for the rotations
R̂αi ,∀α ∈ Ω,∀i. In this stage we use this estimate to
reparametrize problem (3). We rewrite each unknown ro-
tation Rαi as the known estimate R̂αi “plus” an unknown
perturbation; in formulas, we rewrite each rotation as Rαi =
R̂αiExp (θαi), where Exp (·) is the exponential map for
SO(3), and θαi ∈ R3 (this is our new parametrization for
the rotations). With this parametrization, eq. (3) becomes:

min
tαi ,θαi∈R

3

∀α∈Ω,∀i

∑
(αi,βj)∈E

ω2
t

∥∥∥tβj−tαi−R̂αiExp (θαi) t̄
αi
βj

∥∥∥2 (8)

+
ω2
R

2

∥∥∥R̂βjExp
(
θβj
)
−R̂αiExp (θαi) R̄

αi
βj

∥∥∥2
F

The reparametrization allowed to drop the constraints (we are
now trying to estimate vectors in R3), but moved the noncon-
vexity to the objective (Exp (·) is nonlinear in its argument).
In order to solve (8), we take a quadratic approximation of
the cost function. For this purpose we use the following first-
order approximation of the exponential map:

Exp (θαi) ' I3 + S(θαi) (9)

where S(θαi) is a skew symmetric matrix whose entries are
defined by the vector θαi . Substituting (9) into (8) we get
the desired quadratic approximation:

min
tαi ,θαi∈R

3

∀α∈Ω,∀i

∑
(αi,βj)∈E

ω2
t

∥∥∥tβj−tαi−R̂αi t̄
αi
βj
−R̂αiS(θαi)t̄

αi
βj

∥∥∥2(10)

+
ω2
R

2

∥∥∥R̂βj−R̂αiR̄
αi
βj

+ R̂βjS(θβj )−R̂αiS(θαi)R̄
αi
βj

∥∥∥2
F

Rearranging the unknown tαi ,θαi of all robots into a single
vector p, we rewrite (10) as a linear least-squares problem:

min
p
‖Ap p− bp‖2 (11)

whose solution can be found by solving the linear system:

(AT
pAp)p = AT

pbp (12)

From the solution of (12) we build our trajectory estimate:
the entries of p directly define the positions tαi , ∀α ∈ Ω,∀i;
moreover, p includes the rotational corrections θαi , hence we
get our rotation estimate as: Rαi = R̂αiExp (θαi).

Remark 1 (Advantage of Centralized Two-Stage Approach):
The approach reviewed in this section has three advantages.
First, as shown in [1], in common problem instances (i.e.,
for reasonable measurement noise) it returns a solution that
is very close to the ML estimate. Second, the approach
only requires the solution of two linear systems (the
cost of projecting the rotations is negligible), hence it is
computationally efficient. Finally, the approach does not
require an initial guess, therefore it is able to converge even
when the initial trajectory estimate is inaccurate (in those
instances, iterative optimization tends to fail [1]). �

B. Distributed Trajectory Estimation
In this section we show that the two-stage approach

described in Section III-A can be implemented in a decen-
tralized fashion. Since the approach only requires solving
two linear systems, every distributed linear system solver
can be used as workhorse to split the computation among
the robots. For instance, one could adapt the Gaussian
elimination approach of [18] to solve the systems (7), (12).
In this section we propose an alternative approach, based
on the Distributed Gauss-Seidel (DGS) algorithm, and we
discuss its advantages.

In the linear systems (7) and (12) the unknown vector
can be partitioned into subvectors, such that each subvector
contains the variables associated to a single robot in the team.
For instance, we can partition the vector r in (7), as r =
[rα, rβ , . . .], such that rα describes the rotations of robot α.
Similarly, we can partition p = [pα,pβ , . . .] in (12), such
that pα describes the trajectory of α.

Therefore, (7) and (12) can be framed in the general form:

Hy = g ⇔

 Hαα Hαβ . . .
Hβα Hββ . . .

...
...

. . .


 yα
yβ
...

 =

 gα
gβ
...


(13)

where we want to compute the vector y = [yα,yβ , . . .] given
H and g; in (13) we partitioned the square matrix H and
the vector g according to the block-structure of y.

In order to introduce the DGS algorithm, we first observe
that the linear system (13) can be rewritten as:∑

δ∈Ω

Hαδyδ = gα ∀α ∈ Ω

Taking the contribution of yα out of the sum, we get:

Hααyα = −
∑

δ∈Ω\{α}

Hαδyδ + gα ∀α ∈ Ω (14)



The DGS algorithm [34] starts at an arbitrary initial estimate
y(0) = [y

(0)
α ,y

(0)
β , . . .] and, at iteration k, applies the

following update rule, for each α ∈ Ω:

y(k+1)
α = H−1αα

−∑
δ∈Ω+

α

Hαδy
(k+1)
δ −

∑
δ∈Ω−

α

Hαδy
(k)
δ + gα


(15)

where Ω+
α is the set of robots that already computed the (k+

1)-th estimate, while Ω−α is the set of robots that still have to
perform the update (15), excluding node α (intuitively: each
robot uses the latest estimate). Comparing (15) and (14),
we see that if the sequence produced by the iterations (15)
converges to a fixed point, then such point satisfies (14), and
indeed solves the original linear system (13).

The DGS algorithm can be understood in a simple way: at
each iteration, each robot estimates its own variables (y(k+1)

α )
assuming that the variables of the other robots are fixed
(y(k)
δ , y(k+1)

δ ); iterating this procedure, the robots reach an
agreement on the estimates, and converge to the solution
of (13). Using the DGS approach, the robots solve (7) and
(12) in a distributed manner.

We now discuss two crucial aspects: the amount of com-
munication required by the DGS and its convergence.

Remark 2 (Information Exchange in DGS): In this re-
mark we stress that to execute the Gauss-Seidel itera-
tions (15), robot α only needs its intra and inter-robot
measurements EαI and EαS , and an estimate of the separators,
involved in the inter-robot measurements EαS . For instance,
in the graph of Fig. 3 robot α only needs the estimates of
yβ1 and yβ3 , while does not require any knowledge about
the other poses of β.

Fig. 3. Example: (left) trajectory estimation problem and (right) corre-
sponding block structure of the matrix H .

To understand this fact, we note that (7) and (12) model
an estimation problem from pairwise relative measurements.
It is well known that the matrix H (sometimes called the
Hessian [35]) arising in these problems has a block structure
defined by the Laplacian matrix of the underlying graph [23].
For instance, Fig. 3 (right) shows the block sparsity of the
matrix H describing the graph on the left: off-diagonal
block-elements in position (αi, βj) are non zero if and only
if there is an edge (i.e., a measurement) between αi and βj .

Exploiting the block sparsity of H , we simplify the DGS
iterations (15) as:

y(k+1)
α = H−1αα

 −∑
(αi,δj)∈EαS+

Hαiδjy
(k+1)
δj

−
∑

(αi,δj)∈EαS−

Hαiδjy
(k)
δj

+ gα


(16)

where we removed the contributions of the zero blocks from
the sum in (15); the sets EαS

+ and EαS
− satisfy EαS

+ ∪
EαS
− = EαS , and are such that EαS

+ includes the inter-robot

measurements involving the robots which already performed
the (k+1)-th iteration, while EαS

− is the set of measurements
involving robots that have not perform the iteration yet (as
before: each robot simply uses its latest estimate).

Eq. (16) highlights that DGS only requires the estimates
for poses involved in its inter-robot measurements EαS . The
approach involves almost no “privacy violation”: robot δ only
sends an estimate of its rendezvous poses. �

The following proposition, whose proof trivially follows
from [34, Proposition 6.10] (and the fact that the involved
matrices are positive definite), ensures that the proposed
distributed algorithm converges to the desired solution.

Proposition 3 (Convergence of DGS): The Gauss-Seidel
iterations (15) converge to the solution of (13) from any
initial estimate y(0) = [y

(0)
α ,y

(0)
β , . . .]. �

Flagged Initialization. According to Proposition 3, the
DGS approach converges from any initial condition y(0).
However, starting from a “good” initial condition can reduce
the number of iterations to converge, and in turn reduce
the communication burden (each iteration (16) requires the
robots to exchange their estimate of the separators).

In this work, we follow the path of [22] and adopt a
flagged initialization. A flagged initialization scheme only
alters the first DGS iteration as follows. Before the first
iteration, all robots are marked as “uninitialized”. Robot α
performs its iteration (16) without considering the inter-robot
measurements, i.e., eq. (16) becomes y(k+1)

α = H−1ααgα; then
the robot α marks itself as “initialized”. When the robot β
performs its iteration, it includes only the separators from the
robots that are initialized; after performing the DGS iteration,
also β marks itself as initialized. Repeating this procedure,
all robots become initialized after performing the first it-
eration. The following iterations proceed according to the
standard DGS update (16). The following section shows that
flagged initialization significantly speeds up convergence.

IV. EXPERIMENTS

We evaluate the DGS approach in large simulations (Sec-
tion IV-A) and field tests (Section IV-B). The results demon-
strate that the proposed approach is accurate, scalable, robust
to noise, and parsimonious in terms of communication.

A. Simulation Results

In this section, we characterize the performance of the
proposed approach in terms of convergence, scalability (in
the number of robots and separators), and sensitivity to noise.
For our tests, we created simulation datasets in six different
configurations with increasing number of robots: 4, 9, 16, 25,
36 and 49 robots. The robots are arranged in a 3D grid with
each robot moving on a cube, as shown in Fig. 4. When the
robots are at contiguous corners, they can communicate (gray
links). Unless specified otherwise, we generate measurement
noise from a zero-mean Gaussian distribution with standard
deviation σR = 5◦ for the rotations and σt = 0.2m for the
translations. Results are averaged over 10 Monte Carlo runs.

In our problem, the DGS approach is used to sequentially
solve two linear systems, (7) and (12), which return the
minimizers of (6) and (11), respectively. Defining, mr

.
=



(a) 4 Robots (b) 9 Robots (c) 16 Robots

Fig. 4. Simulated 3D datasets with different number of robots. Robots are
shown in different colors. Gray links denote inter-robot measurements.

(a) Rotation Estimation Error (b) Pose Estimation Error
Fig. 5. Comparison between flagged and non-flagged initialization on the
grid scenario with 49 robots. Average estimation errors (solid line) and 1-
sigma standard deviation (shaded area) are in log scale.

minr‖Arr − br‖2, we use the following metric, named the
rotation estimation error, to quantify the error in solving (7):

er(k) = ‖Arr
(k) − br‖2−mr (17)

er(k) quantifies how far is the current estimate r(k) (at the k-
th Gauss-Seidel iteration) from the minimum of the quadratic
cost. Similarly, we define the pose estimation error as:

ep(k) = ‖App
(k) − bp‖2−mp (18)

with mp
.
= minp ‖Ap p−bp‖2. Ideally, we want er(k) and

ep(k) to quickly converge to zero for increasing k.
Flagged Initialization. Let us start by discussing the

advantage of the flagged initialization. We compare the
flagged initialization against a naive initialization in which
the variables (r(0) and p(0), respectively) are initialized to
zero. The results, for the dataset with 49 robots, are shown in
Fig. 5. In both cases the estimation errors go to zero, but the
convergence is faster when using the flagged initialization.
The speed-up is significant for the second linear system
(Fig. 5b). We noticed a similar advantage across all tests.
In the rest of the paper we use the flagged initialization.

Convergence. Fig. 6 shows the average errors er(k) and
ep(k) for all the simulated datasets. In all cases the errors
quickly converge to zero. For large number or robots the
convergence rate becomes slightly slower, while in all cases
the errors is negligible in few tens of iterations.

Fig. 7 shows similar statistics for increasing levels of
noise and for the scenario with 49 robots. Also in this case,
while larger noise implies longer convergence tails, the error
becomes sufficiently small after few tens of iterations.

Fig. 8 shows the estimated trajectory after 10 and 1000
iterations of the DGS algorithm for the 49-robot grid. The
odometric estimate is shown for visualization purposes, while
it is not used in our algorithm. We can see that the estimate

(a) Rotation Estimation Error (b) Pose Estimation Error
Fig. 6. Convergence for scenarios with increasing number of robots.

(a) Rotation Noise (b) Translation Noise
Fig. 7. Convergence for increasing levels of noise (scenario with 49
Robots). (a) Average rotation estimation error for σR = {1, 5, 10, 15, 20}◦.
(b) Average pose estimation error for σt = {0.1, 0.3, 0.5, 0.8, 1.0}m.

(a) Odometry (b) 10 iterations (c) 1000 iterations
Fig. 8. Trajectory estimates for the scenario with 49 robots. (a) Odo-
metric estimate (not used in our approach and only given for visualization
purposes), (b)-(c) DGS estimate after 10 and 1000 iterations.

after 10 iterations is already visually accurate. The DGS
algorithm has an any-time flavor: the trajectory estimates
are already accurate after few iterations and asymptotically
converge to the centralized estimate.

Accuracy and scalability in the number of robots.
While in the previous paragraphs we considered the errors
for each subproblem (er(k) and ep(k)), in this section we
investigate the overall accuracy of the DGS algorithm to
solve our original problem (3). We compare the proposed
approach against the centralized two-stage approach of [1]
and against a standard (centralized) Gauss-Newton method,
available in gtsam [32]. Since the accuracy of the proposed
approach depends on the number of iterations, we need to
set a stopping condition for the DGS iterations. We use the
following criterion: we stop the iterations if the change in the
estimate is sufficiently small. More formally, the iterations
stop when ‖r(k+1) − r(k)‖≤ ηr (similarly, for the second
linear system ‖p(k+1) − p(k)‖≤ ηp).

Table I reports the number of iterations and the cost
attained in problem (3) (the lower the better), for the com-
pared techniques. The number of iterations is the sum of
the number of iterations required to solve (7) and (12). The
cost of the DGS approach is given for two choices of the
thresholds ηr and ηp. As already reported in [1], the last
two columns of the table confirm that the centralized two-



#Robots
Distributed Gauss-Seidel Centralized

ηr = ηp = 10−1 ηr = ηp = 10−2 Two-Stage GN
#Iter Cost #Iter Cost Cost Cost

4 10 1.9 65 1.9 1.9 1.9
9 14 5.3 90 5.2 5.2 5.2

16 16 8.9 163 8.8 8.8 8.7
25 17 16.2 147 16.0 16.0 15.9
36 28 22.9 155 22.7 22.6 22.5
49 26 35.1 337 32.9 32.7 32.5

TABLE I
NUMBER OF ITERATIONS AND COST ATTAINED IN PROBLEM (3) FOR

INCREASING NUMBER OF ROBOTS.

Measurement Distributed Gauss-Seidel Centralized
noise ηr=ηp=10−1 ηr=ηp=10−2 Two-Stage GN

σr(◦) σt(m) #Iter Cost #Iter Cost Cost Cost

1 0.05 8.5 2.1 51.0 1.8 1.8 1.8
5 0.1 21.8 14.8 197.8 14.0 14.0 13.9
10 0.2 35.6 58.4 277.7 56.6 56.6 56.0
15 0.3 39.8 130.5 236.8 128.4 129.3 126.0

TABLE II
NUMBER OF ITERATIONS AND COST ATTAINED IN PROBLEM (3) FOR

INCREASING MEASUREMENT NOISE.

stage approach is practically as accurate as a GN method.
When using a strict stopping condition (ηr = ηp = 10−2),
the DGS approach produces the same error as the central-
ized counterpart (difference smaller than 1%). Relaxing the
stopping conditions to ηr = ηp = 10−1 implies a consistent
reduction in the number of iterations, with a small loss in
accuracy (cost increase is only significant for the scenario
with 49 robots). In summary, the DGS algorithm (with
ηr = ηp = 10−1) ensures accurate estimation within few
iterations, even for large teams.

Sensitivity to measurement noise. We further test the
accuracy of our approach by evaluating the cost and the
number of iterations for increasing levels of noise. Table II
shows that DGS is able to replicate the accuracy of the
centralized two-stage approach, regardless of the noise level.

Scalability in the number of separators. In order to
evaluate the impact of the number of separators on conver-
gence, we simulated two robots moving along parallel tracks
for 10 time steps. The number of communication links were
varied from 1 (single communication) to 10 (communication
at every time), hence the number of separators (for each
robot) ranges from 1 to 10. Fig. 9a shows the number of
iterations required by the DGS algorithm (ηr = ηp = 10−1).
The number of iterations is fairly insensitive to the number
of communication links.

Fig. 9b compares the information exchanged in the
DGS algorithm against a state-of-the-art algorithm,
DDF-SAM [18]. In DDF-SAM, each robot sends
KGN

[
sBp + (sBp)

2
]

bytes, where KGN is the number of
iterations required by a GN method applied to problem (3)
(we consider the best case KGN = 1), s is the number of
separators and Bp is the size of a pose in bytes. In the DGS
algorithm, each robots sends Kr

DJ (sBr)+Kp
DJ (sBp) bytes,

where Kr
DJ and Kp

DJ are the number of iterations required by

(a) (b)
Fig. 9. (a) Number of iterations versus number of separators for the DGS
algorithm. (b) Communication burden (bytes of exchanged information) for
the DGS and DDF-SAM algorithms, for increasing number of separators.

Fig. 10. (Left) Clearpath Jackal robot used for the field tests: platform and
sensor layout; (right) snapshot of the test facility and the Jackal robots.

the DGS algorithm to solve the linear systems (7) and (12),
respectively, and Br is the size of a rotation (in bytes). We
assume Br = 9 doubles (72 bytes)1 and Bp = 6 doubles
(48 bytes). From Fig. 9b we see that the communication
burden of DDF-SAM quickly becomes unsustainable, while
the linear increase in communication of the DGS algorithm
implies large communication savings.

B. Field Experiments

We tested the DGS approach on field data collected by
two Jackal robots (Fig. 10), moving in a MOUT (Military
Operations in Urban Terrain) facility. Each robot collects
3D scans using an Hokuyo 30LS-EW with a custom tilt
mechanism, and uses IMU and wheel odometry to measure
its ego-motion. 3D scans are used to compute inter-robot
measurements (via ICP) during rendezvous. We evaluated
our approach in three different floors of a building.

Fig. 11 shows the trajectories of the two robots in three
runs. The figure compares the DGS and the corresponding
centralized estimate. Examples of 3D point clouds and occu-
pancy grid maps, reconstructed from our trajectory estimates,
are given in Fig. 1. Quantitative results are given in Table III,
which reports the cost attained by the DGS algorithm (against
a centralized benchmark) and the number of iterations.

#Test
Distributed Gauss-Seidel Centralized

ηr = ηp = 10−1 ηr = ηp = 10−2 Two-Stage GN
#Iter Cost #Iter Cost Cost Cost

1 10 0.30 78 0.24 0.23 0.23
2 16 0.62 511 0.56 0.54 0.54
3 28 1.20 606 0.87 0.84 0.84

TABLE III
PERFORMANCE OF DGS ON FIELD DATA.

1In the linear system (7) we relax the orthogonality constraints hence we
cannot parametrize the rotations with a minimal 3-parameter representation.



Distributed Centralized Distributed Centralized Distributed Centralized
Fig. 11. Field tests: estimated trajectories for the distributed Gauss-Seidel algorithm and for the centralized two-stage approach [1]. Trajectories of the
two robots are shown in red and blue, while inter-robot measurements are shown in light gray.

V. CONCLUSIONS AND FUTURE WORK

We proposed a distributed Gauss-Seidel algorithm to esti-
mate the 3D trajectories of multiple cooperative robots from
relative pose measurements. The approach has the following
merits: (i) communication scales linearly in the number of
separators and respects agents’ privacy, (ii) the estimates
are sufficiently accurate after few communication rounds,
(iii) the approach is simple to implement and scales well to
large teams. We demonstrated the effectiveness of the DGS
approach in extensive simulations and field tests.

REFERENCES

[1] L. Carlone, R. Tron, K. Daniilidis, and F. Dellaert, “Initialization
techniques for 3D SLAM: a survey on rotation estimation and its
use in pose graph optimization,” in IEEE Intl. Conf. on Robotics and
Automation (ICRA), 2015, pp. 4597–4604.

[2] L. Paull, G. Huang, M. Seto, and J. Leonard, “Communication-
constrained multi-AUV cooperative SLAM,” in IEEE Intl. Conf. on
Robotics and Automation (ICRA), 2015.

[3] T. Bailey, M. Bryson, H. Mu, J. Vial, L. McCalman, and H. Durrant-
Whyte, “Decentralised cooperative localisation for heterogeneous
teams of mobile robots,” in IEEE Intl. Conf. on Robotics and Au-
tomation (ICRA), 2011.

[4] V. Indelman, P. Gurfil, E. Rivlin, and H. Rotstein, “Graph-based dis-
tributed cooperative navigation for a general multi-robot measurement
model,” Intl. J. of Robotics Research, vol. 31, no. 9, August 2012.

[5] A. Bahr, M. Walter, and J. Leonard, “Consistent cooperative localiza-
tion,” in IEEE Intl. Conf. on Robotics and Automation (ICRA), May
2009, pp. 3415–3422.

[6] J. Dong, E. Nelson, V. Indelman, N. Michael, and F. Dellaert,
“Distributed real-time cooperative localization and mapping using an
uncertainty-aware expectation maximization approach,” in IEEE Intl.
Conf. on Robotics and Automation (ICRA), 2015.

[7] S. Roumeliotis and G. Bekey, “Distributed multi-robot localization,”
IEEE Trans. Robot. Automat., August 2002.

[8] S. Thrun and Y. Liu, “Multi-robot SLAM with sparse extended infor-
mation filters,” in Proceedings of the 11th International Symposium of
Robotics Research (ISRR’03). Sienna, Italy: Springer, 2003.

[9] A. Howard, “Multi-robot simultaneous localization and mapping
using particle filters,” Intl. J. of Robotics Research, vol. 25, no. 12,
pp. 1243–1256, 2006. [Online]. Available: http://cres.usc.edu/cgi-bin/
print_pub_details.pl?pubid=514

[10] L. Carlone, M. K. Ng, J. Du, B. Bona, and M. Indri, “Simultaneous
localization and mapping using Rao-Blackwellized particle filters in
multi robot systems,” J. of Intelligent and Robotic Systems, vol. 63,
no. 2, pp. 283–307, 2011.

[11] L. Andersson and J. Nygards, “C-SAM : Multi-robot SLAM using
square root information smoothing,” in IEEE Intl. Conf. on Robotics
and Automation (ICRA), 2008.

[12] B. Kim, M. Kaess, L. Fletcher, J. Leonard, A. Bachrach, N. Roy,
and S. Teller, “Multiple relative pose graphs for robust cooperative
mapping,” in IEEE Intl. Conf. on Robotics and Automation (ICRA),
Anchorage, Alaska, May 2010, pp. 3185–3192.

[13] M. Lazaro, L. Paz, P. Pinies, J. Castellanos, and G. Grisetti, “Multi-
robot SLAM using condensed measurements,” in IEEE Intl. Conf. on
Robotics and Automation (ICRA), 2011, pp. 1069–1076.

[14] E. Nerurkar, S. Roumeliotis, and A. Martinelli, “Distributed maximum
a posteriori estimation for multi-robot cooperative localization,” in
IEEE Intl. Conf. on Robotics and Automation (ICRA), May 2009, pp.
1402–1409.

[15] M. Franceschelli and A. Gasparri, “On agreement problems with
Gossip algorithms in absence of common reference frames,” in IEEE
Intl. Conf. on Robotics and Automation (ICRA), vol. 337, 2010, pp.
4481–4486.

[16] R. Aragues, L. Carlone, G. Calafiore, and C. Sagues, “Multi-agent
localization from noisy relative pose measurements,” in IEEE Intl.
Conf. on Robotics and Automation (ICRA), 2011, pp. 364–369.

[17] J. Knuth and P. Barooah, “Collaborative localization with heteroge-
neous inter-robot measurements by Riemannian optimization,” in IEEE
Intl. Conf. on Robotics and Automation (ICRA), 2013, pp. 1534–1539.

[18] A. Cunningham, M. Paluri, and F. Dellaert, “DDF-SAM: Fully dis-
tributed slam using constrained factor graphs,” in IEEE/RSJ Intl. Conf.
on Intelligent Robots and Systems (IROS), 2010.

[19] A. Cunningham, V. Indelman, and F. Dellaert, “DDF-SAM 2.0:
Consistent distributed smoothing and mapping,” in IEEE Intl. Conf.
on Robotics and Automation (ICRA), Karlsruhe, Germany, May 2013.

[20] B. Anderson, I. Shames, G. Mao, and B. Fidan, “Formal theory
of noisy sensor network localization,” SIAM Journal on Discrete
Mathematics, vol. 24, no. 2, pp. 684–698, 2010.

[21] G. Calafiore, L. Carlone, and M. Wei, “A distributed technique for
localization of agent formations from relative range measurements,”
IEEE Trans. on Systems, Man, and Cybernetics, Part A, vol. 42, no. 5,
pp. 1083–4427, 2012.

[22] P. Barooah and J. Hespanha, “Semantic structure from motion,” in Intl.
Conf. on Intelligent Sensing and Information Processing, 20105, pp.
226–231.

[23] ——, “Estimation on graphs from relative measurements,” Control
System Magazine, vol. 27, no. 4, pp. 57–74, 2007.

[24] W. Russell, D. Klein, and J. Hespanha, “Optimal estimation on the
graph cycle space,” IEEE Trans. Signal Processing, vol. 59, no. 6, pp.
2834–2846, 2011.

[25] A. Carron, M. Todescato, R. Carli, and L. Schenato, “An asynchronous
consensus-based algorithm for estimation from noisy relative measure-
ments,” IEEE Transactions on Control of Network Systems, vol. 1,
no. 3, pp. 2325–5870, 2014.

[26] R. Aragues, L. Carlone, G. Calafiore, and C. Sagues, “Distributed
centroid estimation from noisy relative measurements,” Systems &
Control Letters, vol. 61, no. 7, pp. 773–779, 2012.

[27] J. Thunberg, E. Montijano, and X. Hu, “Distributed attitude synchro-
nization control,” in IEEE Conf. on Decision and Control, 2011.

[28] R. Tron and R. Vidal, “Distributed image-based 3-D localization in
camera networks,” in IEEE Conf. on Decision and Control, 2009.

[29] G. Piovan, I. Shames, B. Fidan, F. Bullo, and B. Anderson, “On frame
and orientation localization for relative sensing networks,” Automatica,
vol. 49, no. 1, pp. 206–213, 2013.

[30] A. Sarlette and R. Sepulchre, “Consensus optimization on manifolds,”
SIAM J. Control and Optimization, vol. 48, no. 1, pp. 56–76, 2009.

[31] L. Carlone, D. Rosen, G. Calafiore, J. Leonard, and F. Dellaert,
“Lagrangian duality in 3D SLAM: Verification techniques and optimal
solutions,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), 2015.

[32] F. Dellaert, “Factor graphs and GTSAM: A hands-on introduction,”
Georgia Institute of Technology, Tech. Rep. GT-RIM-CP&R-2012-
002, September 2012.

[33] D. Martinec and T. Pajdla, “Robust rotation and translation estimation
in multiview reconstruction,” in IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2007, pp. 1–8.

[34] D. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computation:
Numerical Methods. Englewood Cliffs, NJ: Prentice-Hall, 1989.

[35] F. Dellaert, “Square Root SAM: Simultaneous location and mapping
via square root information smoothing,” in Robotics: Science and
Systems (RSS), 2005.


