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Bundle Adjustment : A
Tutorial



What is Bundle Adjustment ?

Refines a visual reconstruction to
produce jointly optimal 3D structure
and viewing parameters

‘bundle’ refers to the bundle of light
rays leaving each 3D feature and
converging on each camera center.
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objective function:
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indicator variable:
1 if point jis visible in camera i
0 otherwise
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Some Notations

Structure and Cameras being parameterized
by a single large vector 'x’

Small displacement in x represented by 0x
Observations denoted by 'z’

Predicted values at parameter value x,
denoted by z = z(x)

Residual prediction error, Az(x) = z — z(x)
Cost Function=f(x) = f( predz (x))




Objective Function

Minimization of weighted sum of
squared error ( SSE ) cost function:
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Some Facts about Non linear

least squares

Least-squares fitting is a maximum likelihood
estimation of the fitted parameters if the
measurement errors are independent and normally
distributed with constant standard deviation

The probability distribution of the sum of a very
large number of very small random deviations
almost always converges to a normal distribution.



Disadvantage of Non Linear

Least Squares

It is highly sensitive to outliers, because
the Gaussian has extremely small tails
compared to most real measurement

error distribution.

( It is the reason of using Hierarchical SFM )

Gaussian Tail problem and its effects is addressed in the
paper ‘ Pushing the envelope of modern bundle
adjustment techniques, CVPR 2010’



Optimization Techniques

Gradient Descent Method
Newton-Rhapson Method
Gauss - Newton Method
Levenberg - Marquardt Method



Gradient Descent Method

A first-order optimization algorithm.

To find a local minimum of a function
using gradient descent, one takes
steps proportional to the negative of
the gradient of the functlon at fho

current point.
While k<kmax

X, =X, BAVS (%, ;)




Gradient Descent Method

It Is robust when x is far from
optimum but has poor final
convergence

( this fact is used in designing the LM iteration )



Newton - Rhapson Method

It Is @ second order optimization
method

Newton's method can often converge
remarkably qU|cI<Iy e_speC|aIIy If the
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Newton - Rhapson Method

For quadratic function it converges in one
Iteration

For other general function, its asymptotic
convergence is quadratic

The disadvantage of this method is the high
computation complexity of H™1



Gauss - Newton Method

The Gauss-Newton algorithm is a
method used to solve non-linear
least squares problems

f(x) = 5 Az(x)"W Az(x)

g = % = AzZ"WJ H = STBT = J'"WJ + Z‘;(AZTW_);%
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(JTWJ)dox = —J"WAZ



Gauss - Newton Method

For well-parametrized bundle
problems under an outlier-free least
squares cost model evaluated near
the cost minimum, the
Gauss-Newton approximation is
usually very accurate



Levenberg - Marquardt

Algorithm

The LMA interpolates between the
Gauss-Newton algorithm (GNA) and
the method of gradient descent.

When far from the minimum it acts
as a steepest descent and it
performc nalics nawtnn itergtion

when (H+ AW)dx = —g



Levenberg - Marquardt

Algorithm

It takes in to account the best of both
gradient descent and gauss newton method

A > 1= Gradient Descent Method
A< 1= Gauss — Newton Method



General Facts about

optimization methods

Second order optimization methods
like Gauss - Newton and LM requires
a few but heavy iterations

First order optimization methods like
Gradient descent requires a lot of
light iterations.



General Implementation
Issues

Exploit the problem structure
Use factorization effectively

Use stable local parametrizations
Scaling and preconditioning



Computational Bottleneck in LM Iteration

ox = —(H + AW)~1g

H™' ~ ("W)™
computationls the main
bottleneck



Network Graph representation of Jacobian

and Hessian

Network 2] Parameter [(K1~——12|
R connection |\ yav— T
AL LA graph

Al

Bl

O
2| H (|
O

B4

< (DEEE
o | EIEIEIE

D2
D3
D4

E3
E4

Fig. 3. The network graph, parameter connection graph, Jacobian structure and Hessian structure for
a toy bundle problem with five 3D features A-E, four images 1-4 and two camera calibrations K,
(shared by images 1,2) and K, (shared by images 3,4). Feature A is seen in images 1,2; B in 1,2,4;
Cin 1,3; Din 2-4; and E in 3,4.



The Schur Complement and the reduced camera
system

Cholesky Decomposition

Sparse Factorization
Variable Ordering

Top down ordering
Bottom up ordering

Preconditioning
Conjugate Gradient method
Multigrid Methods



Schur Complement

o =Gor (a)= (2)

I -WV™
Left Multiply (O ] to both sides

U-WV'W' 0V, _ e, -WV'g,
w' V (o, £,
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Reduced Camera
System



Cholesky Decomposition

Decompose the matrix Ainto A = LLT , where L is alower
triangular matrix
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continue recursively with 44,



Sparse Factorization

methods

Since both the Hessian and the
reduced camera system is sparse for
large scale systems, sparse
factorization methods are preferred.

Variable Ordering
Preconditioning

Conjugate Gradient Method
Parallel Multigrid Methods



Basic Cholesky Factorization

on Sparse Matrices
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There is a phenomenon of fill - in.

After each step, we have more
number of non - zeros which lead to

more number of floating point
operations.



Basic Cholesky Factorization

on Sparse Matrices
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The effect of cholesky factorization after variables
are re ordered creates the least fill-in

The task of variable ordering is to reorder the

matrix to create the least fill in.



Matrix Re-ordering

Finding the ordering which results in the least fill-in is a
NP-complete problem

Some of the heuristics used are:

Minimum Degree Reordering ( Bottom - up approach )
Nested Dissection ( Top - Down approach )

These methods gives an idea of sparsity and structure of
matrices.



Elimination Graph

Graph G(A) of symmetricn X n matrixA is
undirected graph having n vertices with

edges between verticesiandj ifa;; # 0

At each step of Cholesky factorization
algorithm, corresponding vertex is eliminated

from the graph



Elimination Graph

Neighbors of eliminated vertex in
previous graph become clique (fully
connected subgraph) in modified
graph.

Entries of A that were Initially zero,
may become non zero entries, called

fill



Elimination Graph

X
X
X
x|

X
X
X
p 4

X X X
XX X x| =—>

XX X X

X X X X
X X X X
X XXXX

@O——@ —o—0 )——@ (o—)
..
00— — QOO — Q65— @
bbb Ne YWY

.
(8) (8)

o -0 a0 -
(&)

X X
X
X X
X X

X
p 4
X++ X

X4+ X
X4 X

p
~




Minimum Degree Reordering

Since finding the order of vertices with minimum fill in
IS a NP - Complete problem

This Is a greedy algorithm such that after each
iteration we select a vertex with minimum degree.

This I1s a bottom up method trying to minimize fill-in
locally and greedily at each step, at the risk of global
short sightedness



Nested Dissection

Form the Elimination Graph.

Recursively partition the graph into subgraphs using separators,
small subsets of vertices the removal of which allows the graph to
be partitioned into subgraphs with at most a constant fraction of
the number of vertices.

Perform Cholesky decomposition (a variant of Gaussian
elimination for symmetric matrices), ordering the elimination of
the variables by the recursive structure of the partition: each of
the two subgraphs formed by removing the separator is eliminated
first, and then the separator vertices are eliminated.



Preconditioning

A Preconditioner P of a matrix A is a matrix

such that P™14 has a smaller condition
numberthan A

k(A) = [|All [|A7H]
If P = A, itgivesa singleiteration

convergence, and finding the pre conditioner
is as difficult as solving the linear system



Condition Number

Defines the ill- conditioning or well- conditioning of a
matrix

k(A) = |IAI |A7H]

We cannot trust the solution if the system is ill-
conditioned

k(H) = k(J']) = k%(J), so Hessian has a very large
condition number, it requires a good preconditioning for
conjugate gradient method

Rate of convergence increases as the condition number of
the matrix decreases



Conjugate Gradient Method

It Is an iterative method to solve a
sparse system large enough to be
handled by Cholesky decomposition

Converges in at most n steps where
n is the size of the matrix



Conjugate Gradient Method
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The result IS Xg=1




Thank You



