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GPU
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Takes around 9 seconds to perform one iteration on GPU for 488
cameras, giving it a speedup of around 10 times
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Motivation

Interest Point Detection
Invariant Point Description

Image Matching

Image Geometry Model Fitting

Connected Component Identification and 3D Point
Estimation

Refinement using Bundle Adjustment and Model
Output

—  50% of
Computation
Time

50% of

Computation

Time



Related Work

Building Rome in a Day (ICCV 2009)

Uses 500 computer cores to maximize parallelization in
the SFM pipeline

Building Rome in a Cloudless Day (ECCV 2010)



Problem Statement

The goal is to develop a practical time
implementation of Bundle Adjustment by exploiting all
computing resources of the CPU and the GPU



What is Bundle Adjustment ¢
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Obijective Function:
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Q(Pj,XL-) is the predicted projection of pointi on image |
d(x,y) is the Euclidean distance between the image points represented by x and y

Minimizing this function is a sparse non linear least squares
problem



What is Bundle Adjustment ¢
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The non-linear least squares objective function is solved
using LM Algorithm which is an interpolation of Gauss
Newton and Gradient descent iteration.

The normal equation to be solved during each linear LM
iteration is given as:

(T +ur) 5= T5x e

oX € =X — X and u is the damping factor

Where | = =



Data Structure for the SBA

Column Pointer
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3D Point Indices: l l \
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| storage
Visibility mask
CUDA
blocks

Compressed Column Storage of Visibility Mask having 4 Cameras and 4 3D Points.
Each CUDA Block processes one set of 3D points.



Sparse Bundle Adjustment on the GPU
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Sparse Bundle Adjustment on the GPU
N

1 Computation of the Predicted Projection and Error Vector

o For m cameras, m blocks are launched, with block | computing projections
corresponding to camera |.

21 The computation is limited by the number of registers available per block and a
maximum limit of number of threads per block.
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Sparse Bundle Adjustment on the GPU
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Sparse Bundle Adjustment on the GPU

7 Computation of the Jacobian Matrix and L2 Error

1i).¢
1 The Jacobian Matrix is calculated as p! with a grid structure similar to the

computation of initial projections.
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Block j computes the A;;& B;; submatrices corresponding the jth camera



Sparse Bundle Adjustment on the GPU
N

7 Computation of the Jacobian Matrix and L2 Error

1i).¢
1 The Jacobian Matrix is calculated as p! with a grid structure similar to the

computation of initial projections.

1 While the GPU is computing Jacobian Matrix, CPU computes the L2 Error using the
Error vector



Sparse Bundle Adjustment on the GPU
N
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Sparse Bundle Adjustment on the GPU
—

1 Computation of the Hessian Matrix and JTe

The Hessian Matrix is computed using three different and independent kernels,
two of which computes the diagonal sub-matrices and one of them computes the
non diagonal sub-matrix

/a




Sparse Bundle Adjustment on the GPU
B

o Computation of U

m The grid structure consists of m blocks with each block processing one Uj
where j is the block id

®m Summation is done using segmented scan

Uj =32 AL A
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CUDA
blocks




Sparse Bundle Adjustment on the GPU
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Computation of V

m Computation of V is done in a way similar to U, with each block computing Vi
for the ith point

V. =Y, BIY. !B,




Sparse Bundle Adjustment on the GPU
_

o Computation of W
m Computation of Ws are independent of each other

= nnz/10 blocks are launched with each block computing 10 Ws

=

W.ij = AE;E;; B.ij ‘ U F




Sparse Bundle Adjustment on the GPU
—

Computation of the Hessian Matrix and ] T e

The Hessian Matrix is computed using three different and independent kernels,
two of which computes the diagonal sub-matrices and one of them computes the
non diagonal sub-matrix

After U,V,W is calculated, the augmentation is done using another kernel, which
calculates i and add to the diagonal terms.

While the H matrix is computation is done on GPU, ]TE computation is done on

CPU.



Sparse Bundle Adjustment on the GPU
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Sparse Bundle Adjustment on the GPU
N

- Computation of the Schur Complement to from the Reduced Camera System

o It is the most computationally expensive step of all the modules.
o1 S is a symmetric matrix. So, we calculate only the upper diagonal of S.

o The CUDA grid structure consists of m X m blocks with each block computing a
9 X 9 sub-matrix in the upper diagonal

o1 The computation is limited by the amount of shared memory available and number
of registers available per block.



Sparse Bundle Adjustment on the GPU
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Sparse Bundle Adjustment on the GPU
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1 Computation of the Inverse of the Reduced Camera System and
computation of §,

We use Cholesky Decomposition implemented in MAGMA library in order to
compute the inverse.

It benefits from the hybrid computation by using both CPUs and GPUs and
achieves a speedup of over 10 times than CPU.



Sparse Bundle Adjustment on the GPU
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Compute the Predicted
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Compute Inverse of Reduced Camera
System and calculate §




Hybrid Computation
=
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Computation blocks are efficiently scheduled either on CPU or GPU. Arrows show
the data dependency between various modules on CPU and GPU. Modules
connected through a vertical line are computed in parallel on CPU and GPU



Results and Analysis
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Timings shown are the time taken by each component either on CPU or GPU including
the memory transfer time in one iteration for 488 cameras.



Results and Analysis
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B GPU - Init Proj Computation 0.02 0.02 0.05 0.05 0.06
®m GPU - Jacobian Computation 0.1 0.2 0.32 0.39 045
® GPU - U,V,W Computation 0.14 0.23 0.39 05 0.56
B GPU - S Computation 0.25 097 25 463 6.55
" GPU - Inverse Calculation 0.005 0.09 0.282 0.8675 1.743
® CPU - L2 Error Computation 0 001 0.01 0.01 0.02
m CPU - €3, eb Computation 0.05 0.12 0.17 0.21 0.24
® CPU - e Computation 0.03 0.05 0.08 01 0.11
W Total Time 0515 151 3542 6.4375 9.363

Time(sec) taken for each step in one iteration of Bundle Adjustment on GPU and CPU for
various number of cameras. Total time is the time taken by hybrid implementation of BA
using CPU and GPU in parallel



Results and Analysis
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Time Comparison (one iteration) of Bundle Adjustment Computation on CPU and GPU



Preliminary Results on Fermi
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Summary

We introduced a hybrid algorithm using the GPU
and the CPU to perform practical time bundle
adjustment.

We achieve a speedup of around 8 — 10 times over
the CPU implementation on one quarter of Nvidia

Tesla S1070 GPU



Future Work

We are adapting our approach to the Fermi and
expecting significant speedups on it.

A multi GPU implementation is also being explored
for faster overall processing
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