
PRACTICAL TIME BUNDLE

ADJUSTMENT FOR 3D

RECONSTRUCTION ON THE

GPU

Siddharth Choudhary (IIIT Hyderabad), Shubham Gupta (IIIT Hyderabad),

P J Narayanan (IIIT Hyderabad)

Abstract

Takes around 9 seconds to perform one iteration on GPU for 488

cameras, giving it a speedup of around 10 times

Outline

 Motivation

 Related Work

 Problem Statement

 What is Bundle Adjustment ?

 Sparse Bundle Adjustment on the GPU

 Results and Analysis

 Preliminary Results on Fermi

 Summary

 Future Work

Motivation

Images

Interest Point Detection

Invariant Point Description

Image Matching

Image Geometry Model Fitting

Connected Component Identification and 3D Point

Estimation

Refinement using Bundle Adjustment and Model

Output

50% of

Computation

Time

50% of

Computation

Time

Related Work

 Building Rome in a Day (ICCV 2009)

 Uses 500 computer cores to maximize parallelization in

the SFM pipeline

 Building Rome in a Cloudless Day (ECCV 2010)

Problem Statement

The goal is to develop a practical time

implementation of Bundle Adjustment by exploiting all

computing resources of the CPU and the GPU

What is Bundle Adjustment ?

Objective Function:

What is Bundle Adjustment ?

Data Structure for the SBA

Compressed Column Storage of Visibility Mask having 4 Cameras and 4 3D Points.

Each CUDA Block processes one set of 3D points.

Sparse Bundle Adjustment on the GPU

Compute Jacobian Matrix (J)
Compute L2 Error using Error

Vectors

Compute Schur Complement
to form Reduced Camera

System

Sparse Bundle Adjustment on the GPU

Compute Jacobian Matrix (J)
Compute L2 Error using Error

Vectors

Compute Schur Complement
to form Reduced Camera

System

Sparse Bundle Adjustment on the GPU

 Computation of the Predicted Projection and Error Vector

 For m cameras, m blocks are launched, with block j computing projections

corresponding to camera j.

 The computation is limited by the number of registers available per block and a

maximum limit of number of threads per block.

Sparse Bundle Adjustment on the GPU

Compute Jacobian Matrix (J)
Compute L2 Error using Error

Vectors

Compute Schur Complement
to form Reduced Camera

System

Sparse Bundle Adjustment on the GPU

Compressed

Column

Storage

Sparse Bundle Adjustment on the GPU

Sparse Bundle Adjustment on the GPU

Compute Jacobian Matrix (J)
Compute L2 Error using Error

Vectors

Compute Schur Complement
to form Reduced Camera

System

Sparse Bundle Adjustment on the GPU

Sparse Bundle Adjustment on the GPU

U

 Computation of U

 The grid structure consists of m blocks with each block processing one Uj

where j is the block id

 Summation is done using segmented scan

Sparse Bundle Adjustment on the GPU

U

 Computation of V

 Computation of V is done in a way similar to U, with each block computing Vi

for the ith point

V

Sparse Bundle Adjustment on the GPU

U

 Computation of W

 Computation of Ws are independent of each other

 nnz/10 blocks are launched with each block computing 10 Ws

V

W

Sparse Bundle Adjustment on the GPU

Sparse Bundle Adjustment on the GPU

Compute Jacobian Matrix (J)
Compute L2 Error using Error

Vectors

Compute Schur Complement
to form Reduced Camera

System

Sparse Bundle Adjustment on the GPU

Sparse Bundle Adjustment on the GPU

Compute Jacobian Matrix (J)
Compute L2 Error using Error

Vectors

Compute Schur Complement
to form Reduced Camera

System

Sparse Bundle Adjustment on the GPU

Sparse Bundle Adjustment on the GPU

Compute Jacobian Matrix (J)
Compute L2 Error using Error

Vectors

Compute Schur Complement
to form Reduced Camera

System

GPU CPU

Hybrid Computation

Computation blocks are efficiently scheduled either on CPU or GPU. Arrows show

the data dependency between various modules on CPU and GPU. Modules

connected through a vertical line are computed in parallel on CPU and GPU

Results and Analysis

Timings shown are the time taken by each component either on CPU or GPU including

the memory transfer time in one iteration for 488 cameras.

Results and Analysis

Time(sec) taken for each step in one iteration of Bundle Adjustment on GPU and CPU for

various number of cameras. Total time is the time taken by hybrid implementation of BA

using CPU and GPU in parallel

Results and Analysis

Time Comparison (one iteration) of Bundle Adjustment Computation on CPU and GPU

Preliminary Results on Fermi

Jacobian Computation UVW Computation S Computation

S1070 Tesla GPU 0,25 0,31 6,53

GTX 480 Fermi GPU 0,06 0,05 1,47

0,01

0,1

1

10

T
im

e
 t
a
k
e
n
 (

 i
n
 s

e
co

n
d
s

)
Lo

g
a

ri
th

m
ic

 S
ca

le

Summary

 We introduced a hybrid algorithm using the GPU

and the CPU to perform practical time bundle

adjustment.

 We achieve a speedup of around 8 – 10 times over

the CPU implementation on one quarter of Nvidia

Tesla S1070 GPU

Future Work

 We are adapting our approach to the Fermi and

expecting significant speedups on it.

 A multi GPU implementation is also being explored

for faster overall processing

Thank You

