CVIT

PRACTICAL TIME BUNDLE
ADJUSTMENT FOR 3D
RECONSTRUCTION ON THE
GPU

Abstract
-~

Camera |
Camera 2

Ve Ray \
A , |
Image 2 Image | 0114 013 08 104 11 1.2
' T T T
i 1) 3 o CPU
' e L
: - L F
> ' -~ GPU
n_m VR 0 S T ta | ts
min > v d(Qay, by). xi7)%, 0 006 051 1.07 7.62 9.363
P o1 =1

Takes around 9 seconds to perform one iteration on GPU for 488
cameras, giving it a speedup of around 10 times

Outline

Motivation

Related Work

Problem Statement

What is Bundle Adjustment ¢

Sparse Bundle Adjustment on the GPU
Results and Analysis

Preliminary Results on Fermi

Summary
Future Work

Motivation

Interest Point Detection
Invariant Point Description

Image Matching

Image Geometry Model Fitting

Connected Component Identification and 3D Point
Estimation

Refinement using Bundle Adjustment and Model
Output

— 50% of
Computation
Time

50% of

Computation

Time

Related Work

Building Rome in a Day (ICCV 2009)

Uses 500 computer cores to maximize parallelization in
the SFM pipeline

Building Rome in a Cloudless Day (ECCV 2010)

Problem Statement

The goal is to develop a practical time
implementation of Bundle Adjustment by exploiting all
computing resources of the CPU and the GPU

What is Bundle Adjustment ¢
=

Obijective Function:

mlnz Z d(Q (P],X) xU)

=]_J

Q(Pj,XL-) is the predicted projection of pointi on image |
d(x,y) is the Euclidean distance between the image points represented by x and y

Minimizing this function is a sparse non linear least squares
problem

What is Bundle Adjustment ¢
=

The non-linear least squares objective function is solved
using LM Algorithm which is an interpolation of Gauss
Newton and Gradient descent iteration.

The normal equation to be solved during each linear LM
iteration is given as:

(T +ur) 5= T5x e

oX € =X — X and u is the damping factor

Where | = =

Data Structure for the SBA

Column Pointer

) 2 4 6

3D Point Indices: l l \

2 1 8 1

. At U W : | 2 0 3 2 I3 0 1
(1 00 o) —> |

e RS Compressed
\ | column Camera 1 Cameraz Cameras Camera 4

| storage
Visibility mask
CUDA
blocks

Compressed Column Storage of Visibility Mask having 4 Cameras and 4 3D Points.
Each CUDA Block processes one set of 3D points.

Sparse Bundle Adjustment on the GPU
N

Compute the Predicted
Projection ﬁij and Error

Vectors eij — Xij — ﬁl]

Compute L2 Error using Error

Compute Jacobian Matrix (J) Ve tars

Compute Hessian Matrix T
and augment it (JTZZ1] + Compute J " €

ny

Compute Schur Complement
to form Reduced Camera Compute €, — WV* g,
System

Compute Inverse of Reduced
Camera System and calculate §

Sparse Bundle Adjustment on the GPU
N

Compute the Predicted
Projection ﬁij and Error

Vectors eij — Xij —),(\1]

Compute L2 Error using Error

Compute Jacobian Matrix (J) Vectors

Compute Hessian Matrix

and augment it (JTEZ1] + Compute JTe
)

Compute Schur Complement
to form Reduced Camera Compute €, — WV* g,
System

Compute Inverse of Reduced
Camera System and calculate §

Sparse Bundle Adjustment on the GPU
N

1 Computation of the Predicted Projection and Error Vector

o For m cameras, m blocks are launched, with block | computing projections
corresponding to camera |.

21 The computation is limited by the number of registers available per block and a
maximum limit of number of threads per block.

1.l 2|0 5]l 2]|8] e |2
\ \

Camera 1 Cameraz Camera3 Camera 4

Sparse Bundle Adjustment on the GPU
N

Compute the Predicted
Projection X;; and Error

Vectors Eii = Xii - il]

Compute L2 Error using Error

Compute Jacobian Matrix (J) Ve

Compute Hessian Matrix

and augment it (JTEZ1] + Compute JTe
)

Compute Schur Complement
to form Reduced Camera Compute €, — WV* g,
System

Compute Inverse of Reduced
Camera System and calculate §

Sparse Bundle Adjustment on the GPU

7 Computation of the Jacobian Matrix and L2 Error

1i).¢
1 The Jacobian Matrix is calculated as p! with a grid structure similar to the

computation of initial projections.

[Ap 0O 0 0 0 By 0 0 Y . .
A O 0 0 0 0 Bx 0 Aij— i _ 0Q(a;, b;) (i _ gy £ k)
0 Ay 0 0 By 0 0 0 Compressed da da Oa
0 Ay 0 0 0 0 0 By . .
0 0 As 0O 0 By 0 0 Column Bij — 2 _ 0Qab) Iy _ o0y
0 0 Ay 0 0 0 0 By orage 0b; ob; Oby
0 0 0 Ay By 0 0 0
\ 0 0 0 A3 0 By 0 0)

J= []*'G’Llﬂ:- Blﬂ:- A@‘.- B?_ﬁl A—Ol 3 Bﬂl'.- A311- BSZ".-IAIZ'.- Blﬂ:h AS‘E'.- BSZHACB: BDB:!-AIB: BIB]

Block j computes the A;;& B;; submatrices corresponding the jth camera

Sparse Bundle Adjustment on the GPU
N

7 Computation of the Jacobian Matrix and L2 Error

1i).¢
1 The Jacobian Matrix is calculated as p! with a grid structure similar to the

computation of initial projections.

1 While the GPU is computing Jacobian Matrix, CPU computes the L2 Error using the
Error vector

Sparse Bundle Adjustment on the GPU
N

Compute the Predicted
Projection X;; and Error

Vectors Eii = Xii = ﬁl]

Compute L2 Error using Error

Compute Jacobian Matrix (J) Ve

Compute Hessian Matrix

and augment it (JTZZ1] + Compute JTe
ul)

Compute Schur Complement
to form Reduced Camera Compute €, — WV* g,
System

Compute Inverse of Reduced
Camera System and calculate §

Sparse Bundle Adjustment on the GPU
—

1 Computation of the Hessian Matrix and JTe

The Hessian Matrix is computed using three different and independent kernels,
two of which computes the diagonal sub-matrices and one of them computes the
non diagonal sub-matrix

/a

Sparse Bundle Adjustment on the GPU
B

o Computation of U

m The grid structure consists of m blocks with each block processing one Uj
where j is the block id

®m Summation is done using segmented scan

Uj =32 AL A

1 2 o 3| 2 |8 0 1

‘Y'LTYjﬁ—’

Camera 1 Camera 2 Camera 3 Camera 4

] =) (=

CUDA
blocks

Sparse Bundle Adjustment on the GPU
—

Computation of V

m Computation of V is done in a way similar to U, with each block computing Vi
for the ith point

V. =Y, BIY. !B,

Sparse Bundle Adjustment on the GPU
_

o Computation of W
m Computation of Ws are independent of each other

= nnz/10 blocks are launched with each block computing 10 Ws

=

W.ij = AE;E;; B.ij ‘ U F

Sparse Bundle Adjustment on the GPU
—

Computation of the Hessian Matrix and] T e

The Hessian Matrix is computed using three different and independent kernels,
two of which computes the diagonal sub-matrices and one of them computes the
non diagonal sub-matrix

After U,V,W is calculated, the augmentation is done using another kernel, which
calculates i and add to the diagonal terms.

While the H matrix is computation is done on GPU,]TE computation is done on

CPU.

Sparse Bundle Adjustment on the GPU
N

Compute the Predicted
Projection X;; and Error

Vectors Eii = Xii = ﬁl]

Compute L2 Error using Error

Compute Jacobian Matrix (J) Ve

Compute Hessian Matrix

and augment it (JTEZ1] + Compute JTe
)

Compute Schur Complement '
to form Reduced Camera Compute €, — WV* g,
System

Compute Inverse of Reduced
Camera System and calculate 6

Sparse Bundle Adjustment on the GPU
N

- Computation of the Schur Complement to from the Reduced Camera System

o It is the most computationally expensive step of all the modules.
o1 S is a symmetric matrix. So, we calculate only the upper diagonal of S.

o The CUDA grid structure consists of m X m blocks with each block computing a
9 X 9 sub-matrix in the upper diagonal

o1 The computation is limited by the amount of shared memory available and number
of registers available per block.

Sparse Bundle Adjustment on the GPU
N

Compute the Predicted
Projection X;; and Error

Vectors Eii = Xii = ﬁl]

Compute L2 Error using Error

Compute Jacobian Matrix (J) Vectors

Compute Hessian Matrix
and augment it (JTEZ1] + Compute JTe

ny

Compute Schur Complement
to form Reduced Camera Compute €, — WV* g,
System

Compute Inverse of Reduced
Camera System and calculate §

Sparse Bundle Adjustment on the GPU
—

1 Computation of the Inverse of the Reduced Camera System and
computation of §,

We use Cholesky Decomposition implemented in MAGMA library in order to
compute the inverse.

It benefits from the hybrid computation by using both CPUs and GPUs and
achieves a speedup of over 10 times than CPU.

Sparse Bundle Adjustment on the GPU

_ *
Compute the Predicted

Projection ﬁij and Error

Vectors Eij — Xij — ﬁl]

Compute Jacobian Matrix (J) Compute L2 Error using Error
Vectors
)

Compute Schur Complement
to form Reduced Camera
System

Compute Inverse of Reduced Camera
System and calculate §

Hybrid Computation
=

Compute Compute

Pr;‘;ggﬁ‘:g i (J:omg_ute Compute Compute 5 Inversion
j acobian U,V, W (ts) (t,) and GPU

Errar Vectors Matrix (1 i
(t) (tz) then & (t;)

Compute L2 Error

using Error Vector | | Compute

and camera, point | Y€, , €5, (T,)
constraints (T.) i E ij€p, (Tz)

Compute
E — EG. —

Computation blocks are efficiently scheduled either on CPU or GPU. Arrows show
the data dependency between various modules on CPU and GPU. Modules
connected through a vertical line are computed in parallel on CPU and GPU

Results and Analysis
—

0.114 013 08 104 11 1.2
CPU
GPU
0 0.06 0.51 1.07 7.62 9.363

Timings shown are the time taken by each component either on CPU or GPU including
the memory transfer time in one iteration for 488 cameras.

Results and Analysis
N

M 10

~

s

g% 1

s

]

2 c 01

e<

-}

£

= 001

0.001 - -
38 104 210 356 488

B GPU - Init Proj Computation 0.02 0.02 0.05 0.05 0.06
®m GPU - Jacobian Computation 0.1 0.2 0.32 0.39 045
® GPU - U,V,W Computation 0.14 0.23 0.39 05 0.56
B GPU - S Computation 0.25 097 25 463 6.55
" GPU - Inverse Calculation 0.005 0.09 0.282 0.8675 1.743
® CPU - L2 Error Computation 0 001 0.01 0.01 0.02
m CPU - €3, eb Computation 0.05 0.12 0.17 0.21 0.24
® CPU - e Computation 0.03 0.05 0.08 01 0.11
W Total Time 0515 151 3542 6.4375 9.363

Time(sec) taken for each step in one iteration of Bundle Adjustment on GPU and CPU for
various number of cameras. Total time is the time taken by hybrid implementation of BA
using CPU and GPU in parallel

Results and Analysis

100 | | | |] | | | | 10
— — — Computation of CPU
—— = = = Computation on GPU
/ == Speedup e
/ T T~ - - - . . -

1 — - — ./ — - _-_/_’—: _ _
G / _ -
g / -
D -~ o
7 { - =
g 0F _ -~ 48
= —
g , P 7
8 | -
% | - -7
~ -

j _ -~

|l — - - — o= = =

OL_:-_:-_H_L——P"-'-I-'--_I---'I-__—I— | | | 6
0 50 100 150 200 250 300 350 400 450 500
Cameras

Time Comparison (one iteration) of Bundle Adjustment Computation on CPU and GPU

Preliminary Results on Fermi

10
v
!
g
c .2
Z £
€ E
[
X o
-
03
E 0,1
-
0,01
Jacobian Computation UVW Computation S Computation
2 S1070 Tesla GPU 0,25 0,31 6,53
B GTX 480 Fermi GPU 0,06 0,05 1,47

Summary

We introduced a hybrid algorithm using the GPU
and the CPU to perform practical time bundle
adjustment.

We achieve a speedup of around 8 — 10 times over
the CPU implementation on one quarter of Nvidia

Tesla S1070 GPU

Future Work

We are adapting our approach to the Fermi and
expecting significant speedups on it.

A multi GPU implementation is also being explored
for faster overall processing

Thank You

