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Abstract

As AR Cloud gains importance, one key challenge is
large scale, multi-user 3D object detection. Current ap-
proaches typically focus on the single-room, single-user
scenarios. In this work, we present an approach for multi-
user and scalable 3D object detection, based on distributed
data association and fusion. We use an off-the-shelf detec-
tor to detect object instances in 2D and then combine them
in 3D, per object while allowing asynchronous updates to
the map. The distributed data association and fusion al-
lows us to scale the detection to a large number of users
concurrently, while maintaining a lower memory footprint
without loss in accuracy. We show empirical results, where
the distributed and centralized approaches achieve compa-
rable accuracy on the ScanNet dataset while reducing the
memory consumption by a factor of 15.

1. Introduction

3D object detection is a fundamental problem in com-
puter vision and robotics with modern applications like
autonomous driving and augmented reality (AR) where
the ability to detect objects of interest quickly and accu-
rately play a very important role. There are two pop-
ular approaches to do 3D object detection. One is the
reconstruct-then-recognize approach, where we reconstruct
the entire scene from multiple images [33, 36] and then
detect objects of interest in the resulting point-cloud or
mesh [5, 12, 13, 14, 25, 26, 27, 28, 35, 39]. This how-
ever limits the object resolution because we are now re-
constructing an entire scene instead of a single object and
we need the entire image sequence as input. A differ-
ent way is a recognize-and-reconstruct approach, where
we simultaneously do reconstruction and object recognition
[4, 17, 18, 21, 24, 29, 30, 32, 34, 37, 38, 40]. The advantage
of such an approach is that we do not have to wait for the
entire sequence of images any more but the disadvantage
is the object resolution is again limited by voxel resolution
of the scene since scene and objects both are reconsructed.
Another key limitation of such an approach is that sequence
of images input to the algorithm need to be spatially con-

Figure 1: Overview of the problem of multi-user, scalable
3D object detection. (left) Shows multiple RGB-D cam-
era trajectories using different colors. Camera frustum of
each trajectory at a particular timestamp is connected us-
ing straight lines to the object centers visible from that
pose. (center) Poses along with RGB and Depth frames
for each trajectory are streamed through our proposed algo-
rithm which estimates the 3D bounding box of each object
(right) shown in blue.

tiguous. In this work, we propose an algorithm that follows
the recognize-and-reconstruct approach but with objects as
the primary output at any desired resolution, without stor-
ing the background mesh, without the assumption of spatial
contiguity in the input sequence of images and extended to
multiple users.

Multi-user, scalable 3D object detection is not just an
academic one but a real-world problem of current interest.
Consider the scenario of multiple users with AR devices
in the same room looking at some common objects. Each
user now contributes an image containing some objects in
the room from different viewpoints which when all grouped
together temporally lack spatial contiguity. Given this input
sequence of images, the users expect a dense reconstruction
of all objects in the room along with their 3D locations in a
common world co-ordinate system. Also, this needs to be
done not just for a single room with a few users but with
much larger environments at a building or city scale with
hundreds or thousands of users. We need to be scalable
along three important axes: maps, users and objects.

Contributions. Our main contribution in this work is
a proposed solution for the above problem of Multi-user,
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Scalable 3D Object Detection. We achieve this using
Distributed Association and Fusion where now instead of
matching two consecutive images (assuming spatial conti-
guity), we match objects detected in the current image with
currently detected and reconstructed 3D objects. The dis-
tributed data association step matches detections in the cur-
rent frame with 3D objects visible that frame to find if a
new detected corresponds to an existing object. The dis-
tributed fusion step then combines the new detection with
the matched existing object. The association is distributed
at a per-image level and the fusion is distributed at a per-
object level allowing for high scalability.
Assumptions. In this work, we assume that the 6DOF
poses for each user’s trajectory in the same global coordi-
nate frame is available. This is available either using Magic
Leap’s persistent coordinate frames [15], Azure spatial an-
chor [19] or decentralized mapping techniques [1, 3, 9, 22].
Related Work. The robotics community has actively
worked in building distributed maps [1, 3, 6, 9, 22], where
multiple agents communicate to reach consensus on a com-
mon map (see [2] for an exhaustive survey). Map API [7]
propose a distributed mapping framework for building large
scale maps with multiple agents. We build upon similar dis-
tributed mapping frameworks, but represent the map as ob-
jects achieving higher efficiency and scalability.

Semantic SLAM uses semantic entities like objects and
planes as landmarks during the SLAM pipeline [4, 8, 11,
17, 23, 31, 37] and show that it helps improve the accuracy
of the estimated trajectory. Fusion++ [17] combines object
based SLAM, with object level TSDF for high quality ob-
ject reconstructions. Panoptic Fusion [21] builds a seman-
tic map of objects and stuff in an online framework. Most
of the above approaches store dense scene representation
along with objects and are thus not scalable to large maps.

2. Distributed 3D Object Detection
The algorithm for distributed 3D object detection is

shown in Algorithm 1. Given an RGB-D input frame F ,
we first predict and localize objects of interest in the im-
age and their corresponding instance masksM. These in-
stance masks are then voxelized by back-projecting into
the world coordinate system under corresponding pose and
depth. Next, we find all the existing 3D objects OF visible
in the current view frustum and associate the 2D detections
M found in the frame with existing 3D objects. If asso-
ciated, we fuse the existing 3D objects with new 2D mea-
surements, otherwise we create a new 3D object. Figure 2
shows the corresponding pipeline.

Since the 3D object detection algorithm runs on every
frame independently, it can easily be parallelized with each
frame being processed on different nodes. Object level
locking/unlocking handles any race conditions that might
arise and ensures that the same object is not updated at the

Algorithm 1: Distributed 3D Object Detection
1: for all frame F do in parallel
2: M← 2D instances of objects of interest in F .
3: OF ← Find all current 3D objects visible in F’s

frustum.
4: Lock objects O ∈ OF .
5: AssociateM with OF using Distributed Data

Association to getMA ⊆M.
6: FuseMA with OF using Distributed Fusion.
7: Create new 3D objects forM−MA.
8: Unlock objects O ∈ OF .
9: end for

same time by different nodes.

Object Representation. We denote the set of objects using
O = {O1,O2, . . .}. Each object instance is represented
using a set of voxels V = {V1,V2, . . .}where Vi represents
the ith voxel. Each voxel is represented using Vi = {v,p}
where v = (vx, vy, vz) represents the 3D location of the
voxel and p represents the occupancy weight.

Distributed Data Association. We use Hungarian method
to associate detections in the current frame F with the ob-
ject O ∈ OF visible in the current frame [20]. We find
the assignment between detections M and objects OF by
minimizing a cost matrix C where C(i, j) is inversely pro-
portional to the number of common voxels V between de-
tection i ∈ M and object j ∈ OF . The set of detections
which gets successfully associated with an existing object is
denoted byMA ∈ M. M−MA denotes non-associated
detections.

Distributed Fusion. Given the assignment from the Dis-
tributed Data Association algorithm, we fuse each object
instance ∈ MA by updating the corresponding associated
object voxel weights and extracting the updated object in-
stances. We resolve the conflict between neighboring in-
stances by assigning each voxel to only one instance at a
particular timestamp. Category label at a particular times-
tamp is the mode of all detection labels for that voxel until
that timestamp. For all non-associated detectionsM−MA,
new objects are created and added to O. The resulting ob-
jects and their corresponding voxels are refined by remov-
ing noisy voxels. Given the refined objects, we estimate the
tightest fitting 3D bounding box for that object.

3. Experimental Results

We show results on the ScanNet benchmarking dataset
[10]. We use mean Average Precision (mAP) evaluated at
an intersection-over-union (IoU) of 0.25 as the metric to
evaluate 3D object detection. mAP@0.25 is a standard met-
ric used by recent works to compare 3D object detection ap-
proaches [10]. 3D IoU of 0.25 is equivalent to an overlap of
0.75 along all three bounding box axes.



Figure 2: Overview of algorithm for Distributed Associa-
tion and Fusion. For every frame, we detect objects of inter-
est, voxelize the corresponding depth pixels, load and lock
the visible objects, associate the visible objects with the de-
tected objects, fuse into the visible objects given association
and finally unlock the locked objects.

Given a ScanNet scene, we have a stream of (pose, RGB,
depth) data that is temporally ordered and spatially con-
tiguous. In the centralized approach, we directly use this
as an input to the standard association and fusion compo-
nents. This gives us a baseline performance of 3D object
detection using mAP@0.25 metric, when the entire scene
was recorded by just a single user. For the distributed
approach, we simulate multiple users by breaking up the
scene data into multiple segments which are then shuffled
to break inter-segment temporal continuity. Note that the
overall data content is identical in both centralized and dis-
tributed approaches with the key difference being the man-
ner in which this data is received and processed. We repeat
this procedure for M = 10 monte-carlo runs and report the
mean & variance of these multiple runs. We show results
with number of users as K = 10, 50, 100. We compare
accuracy for the centralized and distributed algorithms.

We use predicted masks generated using an off-the-shelf
Mask-RCNN model pre-trained on the COCO dataset [16].
We perform our experiment on 5 object categories: Chair,
Table, Laptop, Couch and TV, as these are quite frequently
occurring categories and are also common between COCO
and ScanNet datasets. The list of scenes used in the experi-
ments is available in the Appendix (§6).

Accuracy. Table 1 shows the performance of the central-
ized and distributed approaches. We report mAP@0.25 av-
eraged across all the scenes and all the runs in column 3.
In column 4, we report the variance across all the monte-
carlo runs. From Table 1, we can see that the distributed
approach (with more than 1 user) performs similar to the
centralized approach (with 1 user). Variance across runs
from distributed approach is low which confirms that the
distributed association and fusion algorithm is robust to ran-
dom shuffling of the trajectory. It also shows that RGB,
depth frames and poses do not have be time sequenced for
the algorithm to work and sensor data from multiple users
can be fused in parallel using the distributed association and
fusion algorithm. Example scene snapshots are shown in

Approach #Users mAP@0.25 Variance
Centralized 1 0.669 0
Distributed 10 0.646 0.0027
Distributed 50 0.672 0.0025
Distributed 100 0.664 0.0044

Table 1: Comparison between centralised and distributed
approaches using predicted masks. Best results in bold.

Metric Dense Object-level Map Ratio
Mesh (MB) & Sparse Map (MB)

Mean 201.3 12.001 16.77
Median 198.16 11.63 17.07

Table 2: Comparison between memory requirement of
dense reconstructed mesh and object-level map (including
sparse map) (in MB).

the supplementary.
The slight difference between mAP performance across

the number of users (Table 1) is due to the locally opti-
mal decision taken by the data association algorithm at each
frame. A globally optimal association algorithm reduces the
system scalability. A more robust yet scalable association
algorithm is an appropriate direction for future work.

Memory. Table 2 shows a comparison between the mem-
ory requirement for a map that uses a dense reconstructed
mesh and object-level map. We also include the memory re-
quired to store the sparse map (≈ 10 MB) along with object
level map, since sparse map is used to estimate each user’s
trajectory in a common coordinate frame.

As can be seen, the object-level (+ sparse) map has sig-
nificantly smaller memory footprint. We report the mean,
median and ratio between the two maps averaged across all
ScanNet scenes.

Discussion. Table 1 and 2 show that using objects along
with the proposed distributed association and fusion al-
gorithm (Algorithm 1) enables scalability along the three
important axes: maps, users, objects. (1) Our proposed
approach requires minimal additional memory storage to
store objects on top of existing sparse mapping approaches
[15, 19]. Therefore, it can scale to large maps as compared
to dense reconstructed mesh based approaches. (2) Each
user’s RGB-D frames can be processed in parallel on differ-
ent nodes without affecting the accuracy (Table 1). There-
fore, the number of nodes can be scaled up and down de-
pending on the number of users. (3) Each object can be up-
dated asynchronously with all the other objects in the map
and therefore enables scaling with the number of objects.
This is in contrast with dense reconstructed mesh based ap-
proaches which would require to lock the complete map
before the map can be updated. Object level locks enable
object level scalability.



4. Conclusion
We presented an approach for scalable 3D object detec-

tion for an asynchronous and distributed system running in
the cloud. Our empirical results showed almost negligible
variance between the proposed distributed and a baseline
centralized system, with around 15 times smaller memory
footprint.
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6. Appendix
For experiments with all the scannet scenes, we used

the following scenes: scene0025 00, scene0050 00,
scene0050 01, scene0050 02, scene0095 01,
scene0207 02, scene0231 01, scene0249 00,

scene0251 00, scene0314 00, scene0334 00,
scene0334 01, scene0334 02, scene0423 00,
scene0423 01, scene0423 02, scene0430 00,
scene0432 00, scene0432 01, scene0461 00,
scene0500 01, scene0518 00, scene0549 01,
scene0559 00, scene0559 01, scene0559 02,
scene0568 00, scene0568 02, scene0575 02,
scene0591 01, scene0609 00, scene0609 02,
scene0609 03, scene0647 00, scene0647 01,
scene0655 00, scene0655 01, scene0660 00,
scene0671 01, scene0701 01, scene0701 02.


