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Abstract— Existing Simultaneous Localization and Mapping
systems require an extensive manual pre-calibration process.
Non-manual calibration procedures use manipulators to create
known patterns in order to estimate the unknown calibration.
Calibration is often time-consuming and involves humans per-
forming repetitive tasks such as aligning a known calibration
target at different poses with respect to the sensor. We propose
an algorithm that plans a trajectory which actively reduces
the uncertainty of the robot’s calibration given a rough initial
calibration estimate. Calibration is performed autonomously in
a previously unknown environment by maintaining the belief
over landmarks, poses, and the calibration parameters. We
present experimental results to demonstrate the approach’s
ability to autonomously calibrate the exteroceptive sensor in
simulated and real environments. We show that even a greedy
approach can reduce the effort needed to perform calibration
every time the robot is reconfigured for autonomous tasks
and mitigates the possibility of human error added into the
calibration.

I. INTRODUCTION

Autonomous robots depend on high-quality extrinsic cali-

bration of their sensors to reliably perform their tasks. As a

motivating example, one of the tasks typically performed by

mobile robots is inferring the structure of the environment

using sensor measurements. Given a representation of the

world, the robot could generate a plan of actions to accom-

plish a given goal like navigation.

We study the self-calibration problem to autonomously es-

timate the extrinsic parameters of the sensors. Simultaneous

Calibration Localization and Mapping problem attempt to

jointly estimate the location of landmarks, the trajectory of

the robot and the extrinsic parameters of the sensors on the

robot. We exploit the structure of this problem to greedily

plan a path that would reduce the uncertainty of the extrinsic

parameters of the robot. Fig. 1 shows the output of such

a system where the calibration parameters, trajectory, and

landmarks are jointly estimated.

Often a human operator is given a task with easy objectives

such as repeatedly aligning the robot’s field of view with the

calibration grid, a process that could be sped up through

automation. This would also allow the robot to be robust to

sensor alignment changes between different experiments due

to either intentional or accidental reconfigurations.

We propose a novel algorithm that allows the robot to

perform a self-calibration routine through autonomous in-

vestigative movements around a previously unknown envi-

ronment that would then enable the robot to autonomously
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Fig. 1: The figure above shows the robot’s estimated tra-

jectory and the two transforms represent the ground truth

transform and the estimated sensor transform with respect to

base at that time.

perform other tasks. The main contribution of this paper is to

show the possibility of a generalized, multi-modal approach

to autonomously calibrate extrinsic parameters of available

sensors on the robot by leveraging a greedy planner to

quickly estimate the extrinsic sensor transform. This would

greatly reduce the amount of time and effort required to setup

an autonomous robot. We further demonstrate the utility of

planning towards the application of simultaneous localization

calibration and mapping.

II. RELATED WORK

In the last years, there has been substantial research to

solve the challenging problem to calibrate sensors on a robot.

Extrinsic calibration techniques has been studied in depth by

Zhang [1] [2], Heikkilä [3]. Classical methods just calibrate

one sensor at the time to guarantee accurate results.

An alternative approach is to calibrate the system with

many sensors at the same time. Roy and Thrun [4] proposed

a statistical method which uses the robot’s sensor to auto-

matically calibrate the robot as it operates. This approach

also enables the robot to adapt to changes in its kinematics

on-line. Le and Ng [5] presented a unified framework that

jointly calibrates many sensors simultaneously. Their algo-

rithm satisfies precision requirements for tasks and takes less

human time compared to older methods.

The presence of landmarks or synthetic objects allowed

a multi-sensor system to be calibrated by itself [6] where

the only input in the calibration is a sequence of images

with easily detectable spots acquired from low cost syn-

chronized the multi-camera system. Other techniques [7]

[8] [9] [10] focused on calibrate lidar sensors with respect

to a camera for data fusion purposes. Gao and Spletzer

[11] proposed and automated on-line approach to calibrating

multiple LIDARs mounted in a car. This technique supports

"real time" calibration operations and the convex relaxation
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is computationally efficient than more standard non-linear

least squares approaches. Heng et al. [12] proposed an

alternative approach called infrastructure-based calibration

that is efficient, requires no modification of the calibration

area and is completely unsupervised. The use of this system

does not assume an overlapping field of view between any

two cameras and does not require an initial guess of any

extrinsic parameter.

In [13] Foxlin discusses the design of a very general

architectural framework for navigation and tracking that

fuse dead-reckoning sensors with environment-referenced

sensors. His framework can handle full SLACAM (Simul-

taneous Localization and Calibration for Mapping) into a

complementary EKF (Extended Kalman Filter) with explicit

states for intrinsic and extrinsic parameters of sensors and

targets attached to the mobile platform or to the map.

Caltabiano [14] presented a localization algorithm for mobile

robots able to calculate absolute position and orientation

of the platform to estimate the odometry parameters. The

computational time of this method is low compared with

other classical approaches because the odometry parameters

are automatically estimated while the platform is in motion.

Levinson and Thrun [15] [16] introduces two new real-

time techniques that enable camera-laser calibration online,

automatically, and in arbitrary environments. The constant

background monitoring algorithm detects sudden miscalibra-

tions which allow the robot to rely on the acquired sensor

data. In addition, the technique is able to track gradual drift

of sensor pose over time, without performing computation-

ally intensive global optimizations over the entire search

space.

Kümmerle et al. [17] [18] introduced a Simultaneous Pa-

rameter Calibration Localization and Mapping method wich

performs on-line estimation of the calibration parameters

while performing Simultaneous Localization and Mapping

(SLAM). This method does not require prior knowledge of

the environment and relies on a rough initial guess of the

robot parameters.

We can generalize motion trajectories suitable for au-

tonomous calibration by taking advantage of planning within

the Generalized Belief Space, which is related to POMDP,

or a Belief Road Map. A Belief Road Map assumes a

known environment with uncertain trajectory and encodes

the information as a cost of moving along graphs’ edge.

This may be extended in some cases to partially unknown

environments that have only been partially explored [19]. An

analogous system given only a nominal policy that covers

the target area, without any other a priori environmental

information, has been able to plan and navigate using a

Rapidly-exploring Random Graph (RRG). The Generalized

Belief Space removes the dependence on even a nominal

policy but retains the need for a good initial estimate [20].

While assuming maximum-likelihood is easiest with this

method, there may be some cost benefit to not making this

assumption [21].

III. APPROACH

As the robot moves in an unknown environment, it

continuously maps using the simultaneous localization and

mapping (SLAM) pipeline presented by Trevor et al. [22].

However, in contrast to the known extrinsic sensor calibration

as assumed in general, we model the extrinsic calibration as

an unknown parameter and estimate its uncertainty along

with other unknown parameters like landmarks and poses.

At each instant, the robot plans a trajectory which actively

reduces the uncertainty of extrinsic calibration parameters.

As a result, the robot autonomously calibrates its sensor by

actively moving in the direction of the maximum uncertainty

reduction.

In this section, we briefly review simultaneous localization

and mapping, explain the theoretical details behind simulta-

neous calibration, localization, and mapping and propose an

approach for autonomous and active planning in belief space

for extrinsic calibration.

A. Simultaneous Localization and Mapping (SLAM)

In landmark-based SLAM, a robot, while navigating, tries

to localize itself and at the same time build a map of the envi-

ronment (represented using landmarks). Assuming a pose of

the robot at the ith time step is xi with i∈ 0 . . .M, a landmark

is l j with j ∈ 0 . . .N and a measurement is zk, with k ∈
0 . . .K, the joint probability model is given as, P(X ,L,Z) =
P(xo)∏

M
i=1 P(xi|xi−1,ui)∏

K
k=1 P

(

zk|xik, l jk

)

where P(xo) is a

prior on the initial state, P(xi|xi−1,ui) is the motion model,

parametrized by a control input ui and P(zk|xik, l jk) is the

landmark measurement model, xik and l jk corresponds to

measurement zk. Assuming the motion and measurement

models are Gaussian, P(xi|xi−1,ui) ∝ exp− 1
2
‖ fi(xi−1,ui)−

xi‖
2
Λi

and P(zk|xik, l jk) ∝ exp− 1
2
‖hk(xik, l jk)− zk‖

2
Σk

where

f () is the robot motion equation and h() is a landmark

measurement equation with Λi and Σk as the respective

covariances.

We use a factor graph to represent the joint probability

model P(X ,L,Z) where each factor represents either P(xo) or

P(xi|xi−1,ui) or P
(

zk|xik, l jk

)

. Therefore the joint probability

model can be written as P(X ,L,Z)∝ g(Θ) =∏i gi(Θi) where

Θi is the set of variables θ j adjacent to the factor gi.

Fig. 2 shows the corresponding factor graph. Given all the

measurements, we obtain the maximum a posteriori (MAP)

estimate by maximizing the joint probability P(X ,L,Z).

X0 X1 X2 X3

L0 L1 L2

Fig. 2: Factor graph representation of the SLAM problem.

Blue circles denote the poses (X) and green circles denote

landmarks (L). Small purple circles represent odometry con-

straints and red circles represent landmark-pose constraint.
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Θ∗ = argmax
Θ

P(X ,L|Z) = argmin
Θ

(− logg(Θ)) (1)

which leads to the following non-linear least squares prob-

lem: Θ∗ = argminΘ ∑
M
i=1‖ fi (xi−1,ui)− xi‖

2
Λi

+∑
K
k=1‖hk(xik, l jk)− zk‖

2
Σk

.

The non-linear least squares problem is solved using

a non-linear optimization method such as the Levenberg-

Marquardt algorithm which solves a succession of linear

approximations in order to approach the minimum. We use

Square Root SAM (Dellaert and Kaess [23]) to optimize the

resulting factor graph.

B. Simultaneous Calibration, Localization and Mapping

X0 X1 X2 X3

L0 L1 L2

Ω

Φ

Fig. 3: Factor graph representing the Simultaneous Cal-

ibration, Localization and Mapping problem. Gray circles

represent the additional calibration parameters (Ω,Φ) which

are connected to other factors resulting in joint optimization

over landmarks, poses and calibration parameters

In order to perform simultaneous calibration, localiza-

tion and mapping we explicitly represent the additional

calibration parameters in the joint probability model as

P(X ,L,Z,Ω,Φ) = P(xo)∏
M
i=1 P(xi|xi−1,ui,Ω)

∏
K
k=1 P

(

zk|xik, l jk,Φ
)

where Ω represents odometry bias

parameters and Φ represents the extrinsic transformation

between the robot base and the corresponding exteroceptive

sensor which has to be calibrated. Fig. 3 shows the cor-

responding factor graph. Each sensor will have a different

extrinsic transformation Φ but for simplicity we use a single

Φ corresponding to a single sensor. Optimization can be done

in a similar manner as shown in the previous section with

additional variables representing the extrinsic calibration Φ

and odometry bias Ω. The resulting non-linear optimization

is Θ∗ = argminΘ ∑
M
i=1‖ fi (xi−1,ui,Ω)− xi‖

2
Λi

+∑
K
k=1‖hk(xik, l jk,Φ)− zk‖

2
Σk

C. Autonomous Extrinsic Calibration using Active Planning

We use active planning in belief space for autonomous

extrinsic calibration of an exteroceptive sensor. Planning

is done such that it actively reduces calibration parameter

uncertainty at each instant in a previously unknown envi-

ronment. To achieve that end, we integrate simultaneous

calibration, localization and mapping with an active planning

framework resulting in planning for calibration.

X0 X1 X2 X3

L0 L1 L2

Ω

Φ

X4 X5

U34 U45

Fig. 4: Factor graph representing the Planning for Calibra-

tion problem. Orange circles to the right represent the future

control inputs and predicted poses. Maximum likelihood

observations are represented by small orange circles.

In order to compute the optimal control action over the

s lookahead steps, we compute the predicted belief over

the time horizon. However we don’t know the observations

ZM+1:M+s ahead of time, given M is the current time step.

We assume the maximum likelihood observation as future

observation given the current belief over landmarks and

poses and future control inputs. Modeling future observations

as unknown has an insignificant increase in efficiency [21].

We also assume that the number of landmarks does not

change when we predict the belief over the time horizon.

Given the estimated extrinsic calibration parameter ΦM

and odometry bias ΩM , estimated poses and landmarks up to

time M, current observations Z1:M , control inputs UM+1:M+s,

and the corresponding predicted observations ZM+1:M+s, the

predicted calibration belief ΦM+s,ΩM+s at a future time step

l is given as

gb(ΦM+s,ΩM+s) =

P(ΦM+s,ΩM+s|X1:M+s,L1:M+s,Z1:M+s,UM+1:M+s)

Fig. 4 shows the corresponding factor graph. The control

action minimizes the general objective function J(UM+s:M+s)
over s look ahead steps

J(UM+1:M+s) = cl(gb(ΦM+s,ΩM+s))

where cs is defined as the determinant of predicted joint

covariance of the calibration parameters ΦM+s,ΩMs . At each

step the general objective function selects the control ac-

tion that results in the minimum predicted uncertainty of

the calibration parameter. In turn, the resulting planning

algorithm will ensure that the robot moves in a direction

that will reduce the associated calibration uncertainty. Given

the control action, the robot is moved in the corresponding

direction followed by re-estimation of landmarks and pose

beliefs. Using the new added poses and landmarks, we again

estimate the predicted belief over the next s look ahead steps.

This algorithm is run until the change in the uncertainty

determinant of the calibration parameters is below a certain

threshold or the maximum number of steps are taken. Algo-

rithm 1 summarizes the process.
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Algorithm 1: Active Planning based Extrinsic Calibra-

tion

1: {X ,L}← Initialize by taking random step

2: repeat

3: Select control action that minimizes the objective

function: U = minUM+1:M+s
J(UM+1:M+s)

4: Move the robot in the corresponding direction.

5: Re-estimate the pose and landmark beliefs

6: until stopping criterion is met

a) Monte-Carlo Sampling: To select the control action

that minimizes the objective function J(UM+1:M+s) we per-

form Monte-Carlo sampling where we randomly the select

sequence of control actions from among a discrete set of

control action sequences and estimates the corresponding

value of the objective function. The control action which

results in the minimum value of the objective function is

taken as the optimal control action. Algorithm 2 summarizes

it.

We use random sampling in the discrete control space, as

opposed to using a gradient descent in continuous space to

reduce the probability of being stuck in local minima and to

allow for better back-tracking. To sample in control space for

the mobile robot experiments, we randomly generate samples

in the velocity space (x,θ) and predict the position based on

applying these velocities for a pre-defined time using the

dynamics of the robot.

Algorithm 2: Monte-Carlo Sampling(X ,L)

1: Vmin← ∞,Umin← /0

2: for K iterations do

3: U ← Select random sequence of controls UM+1:M+s.

4: Forward simulate the robot poses given the controls.

5: Add Maximum-Likelihood observations.

6: Generate predicted graph g(Θ) and estimates.

7: V ← Estimate the value of objective function J(U).
8: if V ≤Vmin then

9: Vmin←V

10: Umin←U

11: return Umin

b) Uncertainty Prediction: Instead of re-optimizing the

trajectory in order to evaluate the objective function J(U),
we use an approximation to predict the joint covariance of

the calibration parameters required for the evaluation. Future

pose estimates are predicted given the latest pose and control

inputs. We linearize the current graph around the current

estimate and future pose estimates to generate the Jacobian A

and the corresponding Hessian AT A. In order to compute the

covariance of Ω,Φ, we eliminate rest of the variables (non-

calibration parameters: X ,L) from the Hessian AT A using

QR factorization and evaluate the determinant of remaining

matrix corresponding to probability distribution P(Ω,Φ) as

shown in Equation 3. Algorithm 3 summarizes it.

|Σ|−1= |AT A| = |

[

R T

AΩ,Φ

]T [
R T

AΩ,Φ

]

| (2)

P(X ,L,Ω,Φ) = P(X ,L|Ω,Φ)P(Ω,Φ) (3)

Algorithm 3: Uncertainty Prediction(g(Θ),X̂ ,L̂,Ω̂,Φ̂)

1: G← Linearize g(Θ) around X̂ ,L̂,Ω̂,Φ̂

2: (R,AΩ,Φ)← Eliminate X ,L from G

3: logdet← ln|AΩ,ΦA−1
Ω,Φ|=−2× ln|AΩ,Φ|

4: return exp(logdet)

The above-described algorithm plans a trajectory that

minimizes the calibration uncertainty. The resulting plan

will ensure that the robot moves in a direction that actively

calibrates the sensor transforms.

IV. EXPERIMENTAL RESULTS

In this section, we describe the experimental setup, define

the metrics used for evaluation and show the results.

A. Setup

We evaluate our algorithm in a simulated environment with

known data association and ground-truth parameter values

and real environment using a robot platform. In rest of the

experiments we assume that odometry bias (Ω) is known

since the focus of this paper is to perform extrinsic calibra-

tion of an exteroceptive sensor. However, this algorithm can

be easily extended to estimating odometry biases as well at

the cost of increased non-linearity in the resulting objective

function.

1) Simulated Environment: In simulation, we directly

compare the result of our autonomous calibration algorithm

against known extrinsic calibration parameter values for the

exteroceptive sensor. It allows us to analyze the performance

of the algorithm with different scenarios and parameter

initializations, and noise in a controlled setting.

The Simultaneous Calibration Localization and Mapping

algorithm is implemented using a factor graph approach as

described in section III. For the planning, we evaluate the

algorithm against the random walk algorithm as there is no

an existing state of the art for this particular problem. In

random walk, at each instant the robot moves in a random

direction instead of moving in a direction which results in

maximum reduction in uncertainty.

For the first set of experiments, we present four different

2D scenarios to compare the proposed approach against the

random walk algorithm. These scenarios are shown in Fig.

5. In each scenario, the robot starts at the same location

for both random walk algorithm and our proposed approach

and we compare the algorithms based on the evaluation

metrics proposed in section IV-B. We assume that there

are no false positive data-associations as the robot moves

through the scene. The robot is assumed to be a 2D point

robot with a range-bearing sensor attached to the robot
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Fig. 5: Simulated Scenarios used for Experiments. Red dots represent the landmarks. Start location of the robot is near

the center of each scene. The size of the world is 500x500.

with a known extrinsic transformation. For each scenario,

we run each algorithm for 10 independent trials given the

same start location and measure the covariance determinant

of the estimated extrinsic transformation and the median

transformation error to the known ground truth calibration.

Evaluation metrics are explained in detail below. We log

the evolution of these metrics with the number of planning

iterations and demonstrate that using active planning results

in faster convergence as compared to random walk algorithm.

The default parameter values are explained in Table I.

Parameter Value

#steps 1

step size 50

angular resolution 1 deg

#samples 360

sensor location (0,50,0)
sensor initialization (0+N (0,10),50+N (0,10),0+N (0,0.1rad))

TABLE I: Default parameter values used in the simulated

environment. #steps refer to the number of looks ahead steps

considered during each iteration. step size is the size of

each step taken in any direction. angular resolution divides

360 degrees into a set of directions which are considered at

each time step. #samples refer to the number of monte-carlo

samples considered. sensor location is the default ground

truth value at which sensor is placed and sensor initialization

is the noisy initial sensor location used as input to the

algorithm. N (µ,Σ) is a normally distributed pseudorandom

number generator having mean µ and variance Σ.

2) Gazebo Environment: For the second set of experi-

ments in simulation, we use Gazebo[24] simulation envi-

ronment to run our algorithm on a turtlebot. It is modified

to attach a Hokuyo laser scanner at a certain height from

the turtlebot base. Instead of maintaining landmarks in

the environment and using landmark-pose constraints, we

estimate pose-pose constraints through scan matching and

add the corresponding pose-pose-transform factor similar to

the odometry bias factors. Omnimapper [22] is used for

mapping. We do not have any assumption on data-association

as well.

In this experiment, we sample the control in the velocity

space, and estimate the change in the confidence of the

sensor extrinsic parameters to choose the next control. The

default parameters for this are shown in Table II. Ground-

truth (x,y,z) sensor location is at (0,0,1.36m) and the sensor

initialization used is (1,−3,1.36m) which is chosen at ran-

dom. We measured the rate of the convergence of the error

of the estimate for 5 independent iterations with random start

Fig. 6: The figures above show an example reconfiguration

for the experiments conducted. The figure on the top left

shows the hokuyo laser on the top of the robot and the figure

on the top right shows the Hokuyo laser towards the right of

the robot. The figure on the bottom shows another possible

configuration of the robot mounted with two Kinect sensors,

a Roboteye RE05 and a Hokuyo laser.

location.

Parameter Value

#steps 1

#samples 100

range min 0.10 m

range max 30.0 m

measurement res 0.01 deg

TABLE II: Default parameter values used in Gazebo and

Real environment. #steps refer to the number of look ahead

steps considered during each iteration. #samples refer to the

number of monte-carlo samples considered. Range min refers

to the minimum range of the sensor. Range max refers to

the maximum range of the sensor. measurement res is the

resolution of the sensor.

3) Real Environment: For experiments in a real environ-

ment, we run our algorithm on a physical robot. The robot

platform consists of a Segway RMP-200 mobile base, which

has been modified to be statically stable. For experiments,

we mounted a Hokuyo UTM30LX-EW laser Range Finder

at a certain height. Computation is performed on an onboard

laptop. To evaluate the system, the robot was allowed to

attempt self-calibration in different locations in an indoor

lab environment. The robot is shown in Fig. 6. This was
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Fig. 7: Plots showing evolution of median transformation

error (left) and median covariance determinant (right) over

planning iterations. Blue line shows the results using our

approach and Red dotted line shows the result using Simul-

taneous Calibration Localization and Mapping (SCLAM) +

random walk algorithm. Median error and covariance in all

the scenes converge faster to the groundtruth values using

our appraoch as compared to using random walk.

an example scenario for the experiment where the system

was evaluated to test the variance against the reconfiguration.

Similar to the Gazebo environment, we use scan matching to

add pose-pose constraints instead of adding landmark-pose

constraints.

B. Evaluation Metrics

Below we explain the evaluation metrics used to compare

our algorithm against random walk algorithm.

1) Median transformation error: It is evaluated by com-

puting the median over the translation errors when comparing

the ground truth sensor translation values to the estimated

sensor translation values. The translation errors are computed

after every planning iteration and the median translation error

is computed over 10 independent trials of the algorithm.

2) Median covariance determinant: Covariance determi-

nant is evaluated by computing the determinant of the

marginal uncertainty of the extrinsic transformation param-

eter. Similar to the previous metric, we compute covariance

determinant after every planning iteration and compute its

median over 10 independent trials of the algorithm.

C. Results

1) Simulated Environment: We compared our algorithm

against random walk algorithm and plotted the evolution of

median transformation error and median covariance error

Fig. 8: Plots showing evolution of error (left) and covariance

(right) for different plan rigidities. Blue plot uses default

parameter value, green dotted plot uses medium plan rigidity

and red dotted plot uses low plan rigidity.

as shown in Fig. 7. We used the default parameters as

summarized in Table I and ran it on scenes shown in Fig. 5.

In median covariance comparison (fig. 7), the median of

the covariance of the sensor transform for all of the 10

runs is plotted with the x-axis being the planning iteration.

The proposed method performs better on all of the scenes.

Scene 3 is the only one where Simultaneous Calibration

Localization and Mapping along with random walk performs

comparably.

Similarly, in median error comparison (fig. 7), the median

of the absolute error (translation error between the estimate

and the ground truth) for all of the 10 runs is plotted with

the x-axis being the planning iteration. The proposed method

performs significantly better in all the scenes except 3. This

is because Scene 3 is a grid of landmarks with a lot of

landmarks being visible as the robot moves in the scene.

This provides good calibration uncertainty convergence irre-

spective of the used strategy (random walk or active planning

based calibration).

Below we analyze the effect of varying parameter values

on the evolution of median error and covariance values.

a) Rigidity of plan in each iteration: We reduce the

rigidity of plan in each iteration by reducing the step size

and increasing the number of steps. We experiment with three

configurations of rigidity, default: (step size: 50, #steps: 1),

medium rigidity: (step size: 25, #steps: 2), low rigidity: (step

size: 10, #steps: 5). Fig. 8 summarizes the results. Reducing

the rigidity of the plan increases the variance in median error

but has better median covariance than more rigid plans. The

reason behind this is that reducing the rigidity might result

in robot getting stuck in local minima even though it leads

to faster covariance reduction.

b) Angular Resolution: We experimented with three

different values of angular resolution, default: 1 degree,

medium: 2 degrees, high: 4 degrees. The angular resolution

affects the accuracy of the measurement and can result in

missed landmarks. Fig. 9 show the results. The varying

angular resolution has an insignificant effect on the number

of median error and covariance values.

c) Number of Monte-Carlo Samples: We experimented

with three configurations of the number of monte-carlo

samples used in the Algorithm 2. The configurations we

experimented with are default: 360, medium: 180, low: 90.

Fig. 10 show the results. Reducing the number of samples

have an insignificant effect on the error and covariance

values.
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Fig. 9: Plots showing evolution of error (left) and covariance

(right) for different angular resolution. Blue plot uses the

default parameter value, green dotted plot uses 2 degrees

angular resolution and red dotted plot uses 4 degrees angular

resolution.

Fig. 10: Plots showing evolution of error (left) and covariance

(right) for different number of samples. Blue plot uses the

default (360) number of samples, green dotted plot uses 180

samples and red dotted plot uses 90 samples.

d) Robustness to bad initialization: To

analyze the robustness of our algorithm to

bad initializations, we experiment with three

configurations of sensor location initializations, default:

(0 + N (0,10),50 + N (0,10),0 + N (0,0.1rad)), medium

noise: (0+N (0,20),50+N (0,20),0+N (0,0.5rad)), large

noise: (0+N (0,40),50+N (0,40),0+N (0,1rad). N (µ,Σ)
is a normally distributed pseudo random number generator

having mean µ and variance Σ. Fig. 11 summarizes the

result. Increasing the initialization noise has an insignificant

effect on the convergence. This implies that the objective

function has a wide basin of attraction and can converge

given bad initializations as well.

2) Gazebo Environment: We experimented in the sim-

ulated Gazebo environment with 10 trials with random

initial locations and random initial poses of the sensor. We

measured the convergence of the absolute error with respect

to the known ground truth over time. This is summarized

in the Fig. 12. This shows that the robot is able to estimate

the extrinsic of the sensor in a timely fashion and to high

degrees of accuracy. This can consistently be seen across the

random restarts and this shows that the algorithm is able to

Fig. 11: Plots showing evolution of error (left) and covariance

(right) for different sensor initializations. Blue plot uses

the default initialization, green dotted plot uses medium

initialization noise and red dotted plot uses high initialization

noise.

Fig. 12: Plots showing evolution of error over time for 5

separate gazebo simulations. The y axis is in m and the x

axis is time in seconds. The lines represent the error over

time for each of the random restarts.

Fig. 13: Plots showing evolution of error over time for 7

separate real robot experiments. The y axis is in m and

the x axis is time in seconds. The lines represent the error

over time for each of the random restarts and different

configurations of the robot.

converge quickly for each of the test cases. As can be seen

in the graph, the robot can autonomously calibrate the sensor

with required accuracy within 300 seconds.

3) Real Environment: For the real experiment, we mea-

sured the ground truth extrinsic calibration by hand. We

experimented with different configurations to measure the

absolute error with respect to time. All the sensors in the

different configurations are calibrated separately. This is

summarized in Fig. 13. This shows that the approach can be

used effectively to estimate the extrinsic parameters of the

sensor on the real robot quickly. The estimation of the sensor

is also invariant to changing the pose of the sensor with

respect to the base. This is consistent with the theoretical

analysis and the simulations.

V. CONCLUSION AND FUTURE WORK

In robotics, proper extrinsic calibration is often mission

critical and the effects of this are apparent. For instance, in

the DARPA robotics challenge, a fall could result in throwing

off the extrinsic calibration. This, in turn, affects other tasks

such as the teleoperation, and perception. Online techniques

that have the ability to self-calibrate can help mitigate such

issues to a certain extent. However, this would be more useful

if the robot could perform a self-calibration routine before

performing any operation.

The laborious and human error prone task of calibration

requires a researcher to collect data for a camera given a

calibration object manually. This is often random motion

but does presuppose some knowledge of the calibration

procedure with some level of experience, and so may not

be purely random. As seen from the results, however, the

proposed algorithm performs better than merely a random

walk approach that thought of as a novice human performing
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manual calibration, but more so in accordance of an expert

who’s each motion serves to reduce a specific uncertainty.

When calibration is performed one of the points of note

is that the person performing the calibration will attempt to

collect data at as many unique poses transforms between the

sensor and the calibration targets. This intuitively can be seen

in the plots from the trajectories generated in the simulation

that the robot chooses to reduce its uncertainty.

Although a human has an intuition of what kind of motion

helps generate better results for the camera calibration prob-

lem, this is not equivalent to having a numerical estimate

of the variance in the change in error between steps. This

often means that an overabundance of data is collected to

ensure the quality of the calibration. Performing this task

manually every time a configuration change occurs on the

robot is a time-consuming task as well as challenging from

a repeatability and reproducibility standpoint.

In the proposed algorithm, we use the idea of a look ahead

to see what the consequence of an action is, and this allows

us to estimate the parameter very close to the ground truth

in fewer steps. Some of the constraints of this type of setup

are that the amount of information available in the world is

limited to what we can observe and what we have observed.

This means that we can have an initial belief state estimate

where the world is completely unknown and the belief state

can be updated over time. The number of possible belief

states is large and searching through all possible situations

is not possible. This restricts the amount of look ahead that

will actually help the algorithm. This highlights one of the

main differences between our work and similar past research.

We believe that this research will greatly benefit the mobile

robot community as a whole and allow us to reduce the time

taken on calibration routines between experiments.

One of the interesting observations, while performing the

experiments was that there were certain emergent behaviors.

For instance, the robot initially prefers taking paths that are

cyclic and this could be attributed to a notion of closing the

loop. This is an interesting behavior as it relates the active

planning to intuition.

In this paper, we presented a novel solution that can

quickly and accurately measure the extrinsic parameters of

a sensor using active planning. One of the most important

aspects of this work is the ability to estimate the pose of the

sensor with respect to the base of the robot in an unknown

world in a timely fashion. This eliminates the need of known

calibration objects and the requirement of having a human

in the loop performing this task. This can help eliminate the

human error involved in performing this task and reduce the

amount of repetitive manual labor required. For future work,

we propose to show that this work could be used to reason

about the failure of a sensor by continuously estimating the

transform and comparing it against its history.

ACKNOWLEDGMENT

This work was generously supported by U.S. Army Re-

search Lab (ARL) trough the MAST-CTA project 329420.

REFERENCES

[1] Z. Zhang, “Flexible camera calibration by viewing a plane from
unknown orientations,” in Int. Conf. on Computer Vision ICCV, 1999.

[2] ——, “A flexible new technique for camera calibration.” IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, vol. 22, no. 11,
2000.

[3] J. Heikkilä, “Geometric camera calibration using circular control
points,” IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, vol. 22, no. 10, 2000.
[4] N. Roy and S. Thrun, “Online self-calibration for mobile robots,” in

1999 IEEE Int. Conf. on Robotics and Automation, 1999.
[5] Q. V. Le and A. Y. Ng, “Joint calibration of multiple sensors.” in

Proceedings on the IEEE/RSJ Int. Conf. on Intelligent Robots and

Systems (IROS), 2009.
[6] T. Svoboda, H. Hug, and L. Van Gool, “ViRoom — low cost

synchronized multicamera system and its self-calibration,” in Pattern

Recognition, 24th DAGM Symposium, ser. LNCS, no. 2449. Springer,
2002.

[7] R. Unnikrishnan and M. Hebert, “Fast extrinsic calibration of a laser
rangefinder to a camera,” CMU-RI-TR-05-09, 2005.

[8] Q. Zhang and R. Pless, “Extrinsic calibration of a camera and laser
range finder (improves camera calibration).” in Proceedings on the

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2004.
[9] C. Mei and P. Rives, “Calibration between a central catadioptric

camera and a laser range finder for robotic applications.” in ICRA,
2006.

[10] D. Scaramuzza, A. Harati, and R. Siegwart, “Extrinsic self calibration
of a camera and a 3d laser range finder from natural scenes,” in Proc.

of The IEEE Int. Conf. on Intelligent Robots and Systems (IROS),
2007.

[11] C. Gao and J. R. Spletzer, “On-line calibration of multiple lidars
on a mobile vehicle platform,” in IEEE Int. Conf. on Robotics and

Automation, (ICRA), 2010.
[12] L. Heng, P. T. Furgale, and M. Pollefeys, “Leveraging image-based

localization for infrastructure-based calibration of a multi-camera rig,”
J. Field Robotics, vol. 32, no. 5, 2015.

[13] E. M. Foxlin, “Generalized architecture for simultaneous localization,
auto-calibration, and map-building,” in Proceedings on the IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems (IROS), 2002.
[14] D. Caltabiano, G. Muscato, and F. Russo, “Localization and self-

calibration of a robot for volcano exploration,” in Proceedings on the

IEEE Int. Conf. on Robotics and Automation (ICRA), 2004.
[15] S. T. Jesse Levinson, “Automatic online calibration of cameras and

lasers,” in Robotics: Science and Systems, 2013.
[16] J. Levinson and S. Thrun, “Automatic calibration of cameras and

lasers in arbitrary environments,” in International Symposium on

Experimental Robotics, 2012.
[17] R. Kuemmerle, G. Grisetti, and W. Burgard, “Simultaneous calibration,

localization, and mapping,” in Proceedings of the IEEE/RSJ Int. Conf.

on Intelligent Robots and Systems IROS, 2011.
[18] ——, “Simultaneous parameter calibration, localization, and map-

ping,” vol. 26, no. 17, 2012.
[19] R. Valencia, M. Morta, J. Andrade-Cetto, and J. Porta, “Planning

reliable paths with pose slam,” IEEE Transactions on Robotics, vol. 29,
no. 4, Aug 2013.

[20] V. Indelman, L. Carlone, and F. Dellaert, “Planning under uncertainty
in the continuous domain: a generalized belief space approach,” in
Proceedings on the IEEE Int. Conf. on Robotics and Automation

(ICRA), 2014.
[21] J. van den Berg, S. Patil, and R. Alterovitz, “Motion planning under

uncertainty using iterative local optimization in belief space,” The

International Journal of Robotics Research, vol. 31, no. 11, 2012.
[22] A. J. Trevor, J. G. Rogers III, and H. I. Christensen, “Omnimapper:

A modular multimodal mapping framework,” in Proceedings on the

IEEE Int. Conf. on Robotics and Automation (ICRA), 2014, pp. 1983–
1990.

[23] F. Dellaert and M. Kaess, “Square Root SAM: Simultaneous local-
ization and mapping via square root information smoothing,” The

International Journal of Robotics Research, vol. 25, no. 12, Dec 2006.
[24] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an

open-source multi-robot simulator,” in Proceedings on the IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems (IROS), 2004.

2505


