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Abstract— Object discovery and modeling have been widely
studied in the computer vision and robotics communities.
SLAM approaches that make use of objects and higher level
features have also recently been proposed. Using higher level
features provides several benefits: these can be more discrim-
inative, which helps data association, and can serve to inform
service robotic tasks that require higher level information,
such as object models and poses. We propose an approach
for online object discovery and object modeling, and extend a
SLAM system to utilize these discovered and modeled objects as
landmarks to help localize the robot in an online manner. Such
landmarks are particularly useful for detecting loop closures
in larger maps. In addition to the map, our system outputs
a database of detected object models for use in future SLAM
or service robotic tasks. Experimental results are presented to
demonstrate the approach’s ability to detect and model objects,
as well as to improve SLAM results by detecting loop closures.

I. INTRODUCTION

Service robots operating in human environments require
a variety of perceptual capabilities, including localization,
mapping, object discovery, recognition, and modeling. Each
environment may have a unique set of objects, and a set of
object models may not be available a-priori. Object discovery
approaches have been proposed to address this need [15],
[3] . Simultaneous Localization and Mapping (SLAM) is
also required for service robot to be able to map new
environments and navigate within them. We propose an
approach to online object discovery and modeling, and show
how to combine this with a SLAM system. The benefits
are twofold: an object database is produced in addition to
the map, and the detected objects are used as landmarks for
SLAM, producing improved mapping results.

Localization and navigation are two basic problems in the
area of mobile robotics. Map based navigation is a commonly
used method to navigate from one point to another, where
maps are commonly obtained using simultaneous localization
and mapping (SLAM). Durrant-Whyte and Bailey provide a
survey of the SLAM literature and the state of art in [8],
[2]. Recent SLAM systems use graph optimization technique
to jointly estimate the entire robot trajectory and landmarks
using sparse optimization techniques [10], [7], [24].

However, traditional feature based maps are composed of
low level primitives like points and lines which are mostly
used to model space based on its geometric shape [5].
These maps lack the semantic information necessary for
performing wider range of tasks, which may require higher
level representation such as object models. Dense metric
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Fig. 1: Snapshot of the process at one instant. The robot tra-
jectory is shown in red. Green lines add constraints between
the object landmarks and the robot poses they are seen from.
Light background shows the aggregated map cloud generated
using the current SLAM solution.

maps also have a lot of redundant information like 3D points
in floor and uninformative textured surfaces which do not
facilitate robot localization. In addition, dense maps built
using depth cameras can be memory intensive as well.

In contrast, maps augmented with objects confer a number
of advantages for mapping the environment. Features, e.g.,
objects and planes, can be represented using a compact
representation and provide a richer description of the en-
vironment. It is simpler to include prior constraints at the
object level than at the lower feature level. The semantic
information available for an object provides better cues for
data association as compared to a 3D point cloud. An object
would not be represented by a 3D point but rather by a 3D
point cloud. Joint optimization over all the camera poses and
objects is computationally cheaper than the joint optimization
over all the 3D points and cameras since, as there are many
fewer objects compared to the number of 3D points in a map.

Hence, semantic mapping has gathered a lot of interest
from the robotics community. Kuipers [18] modeled the
environment as a spatial semantic hierarchy, where each
level expresses states of partial knowledge corresponding to
different level of representations. Ranganathan and Dellaert
[22] presented a 3D generative model for representing places
using objects. The object models are learned in a supervised
manner. Nüchter and Hertzberg [20] described an approach
to semantic mapping by creating a 3D point cloud map



of the environment and labeling points using the different
semantic categories like floor, wall, ceiling or door. Pronobis
et al. [21] proposed a complete and efficient representation
of indoor spaces including semantic information. They use
a multi-layered semantic mapping representation to combine
information about the existence of objects in the environment
with knowledge about the topology and semantic properties
of space such as room size, shape and general appearance.

Some recent semantic mapping work has focused on
using higher level landmarks such as objects. Rogers et
al. recognize door signs and read their text labels such as
room numbers, which are used as landmarks in SLAM [13].
Trevor et al. used planar surfaces corresponding to walls and
tables as landmarks in a mapping system [27]. More recently,
the SLAM++ system proposed by Salas-Moreno et al. [23]
trained domain specific object detectors corresponding to
repeated objects like tables and chairs. The learned detectors
are integrated inside the SLAM framework to recognize and
track those objects resulting in semantic map. Similarly Kim
et al. [16] uses learned object models to reconstruct dense
3D models from single scan of the indoor scene.

Object discovery and scene understanding are also related
to our approach. Karpathy et al. [15] decompose a scene
into candidate segments and ranks them according to their
objectness properties. Collet et al. used domain knowledge
in the form of metadata and use it as constraints to generate
object candidates [3]. Using RGBD sensor, Koppula et al.
[17] used graphical models capturing various image feature
and contextual relationship to semantically label the point
cloud with object classes and used that on a mobile robot for
finding objects in a large cluttered room. Hoiem and Savarese
[11] did a survey of additional recent work in the area of 3D
scene understanding and 3D object recognition.

All of these approaches either learn object models in
advance, or discover them in a batch process after the robot
has scanned the environment and generated a 3D model or
a video sequence. In contrast, our main contribution is to
integrate object discovery and mapping in a SLAM frame-
work, following an online learning paradigm. Considering
the advantages of object augmented maps, we too use objects
as landmarks in addition to other features. However, we
discover objects in an incremental fashion as the robot moves
around in the environment. In contrast to other approaches,
we do not train object detectors ahead of time, but we
discover objects and train on object representation in an
online manner. As the robot moves through the environment,
it continuously segments the scene into non planar and
planar segments (Section II-A). All the non planar segments
associated across frames are considered as object hypotheses.
Every new object is represented using the 3D descriptors and
matched against the other objects in the given map (Section
II-B). The transformation between the new object and the
matched object is used as a constraint when optimizing the
whole map. This is considered as a loop closure constraint
when the robot sees the same object after some time and
is used to optimize the complete trajectory (non sequential
detection). It also helps in reducing the segmentation errors

by adding a constraint between an under-segmented object
part and the full object model, which results in better object
modeling (recurring detection). When the new object does
not match any of the previous objects, the object represen-
tation for the new object is saved for future use. Figure 1
shows a screenshot from our system that illustrates our object
landmarks.

To demonstrate the effectiveness of our approach, we
show results on the object discovered in the process and
the resulting object augmented map generated by it (Figure
4). We also compare the robot trajectory estimated with and
without the use of object landmarks during loop closure
(Figure 7).

II. OUR APPROACH

As the robot moves around in an indoor environment,
we continuously map the environment using the SLAM
system presented by Trevor et al. [27], [28]. ICP along
with odometry information available during each frame is
used to infer the robot pose trajectory. We use the Georgia
Tech Smoothing and Mapping (GTSAM) library to optimize
the robot poses and landmarks [6], [14]. In GTSAM, the
SLAM problem is described as a factor graph where each
factor represents a constraint between the variables (robot
poses, objects, planes etc.). We add some additional factors
in between the objects and pose-objects as we discover and
recognize them. This is described in Section II-A and II-B.
It is jointly optimized by performing maximum a-posteriori
(MAP) inference over the factor graph.

Fig. 2: Flowchart of the data processing pipeline.

Each RGBD frame is segmented using connected com-
ponent segmentation to generate planes and non-planar
segments [29]. We consider all the non-planar segments
as the object segments. Each non planar segment from



each frame is propagated across frames to generate object
hypothesis (Section II-A). The proposed object hypothesis
O are represented using 3D feature descriptors augmented
with map information (Section II-B). Object representation
helps in identifying loop closure when the robot sees the
same object and for producing better object models when
an object part undersegmented in a few frames matches
to the full object model. Object recognition is done by
finding the object representation with the maximum number
of inlier correspondences with the current object (Section
II-B). If an object does not find the minimum number of
inlier correspondences with any of the saved representations,
it saves the representation of the current object. This follows
an online learning framework, where the robot identifies
potential objects and matches to other objects in the map, if
none of them matches it hypothesizes that the potential object
is a new object and therefore saves the representation. Figure
2 shows the flowchart of the complete system. Trevor et al.
provide a detailed description of the mapping framework for
integrating different sensor plugins [28].

In the following discussion we assume that the objects
do not move during the experiment and there are few or no
repetitive objects. We provide the details to our approach in
the sections below.

A. Object Discovery

Segmentation is an important step used in many perception
tasks like object detection and recognition. We use segmen-
tation to extract objects of interest from each RGBD frame
and propagate them across frames to find the set of segments
resulting in one object.

1) Per Frame Segmentation: We assume that in indoor
environments, objects are supported by homogeneous planes
such as walls, floors, table tops. We consider all the ho-
mogeneous planes as planar landmarks and the remaining
non-planar regions as the regions corresponding to potential
objects of interest. To segment such scenes, we employ the
organized connected component segmentation approach of
Trevor et. al [29]. Given a point cloud, surface normals
are computed for each point in each frame using the tech-
nique of Holzer et. al [12]. Using these normals, connected
component corresponding to surfaces with smoothly varying
normals are found. Least squares plane fit is used to recover
planar segments having more than the minimum number of
inliers and low curvature.

Points corresponding to non-planar regions are further
segmented using different segmentation techniques. We ex-
periment with connected component segmentation [29] and
graph based segmentation [9] to segment out objects. We
use connected component segmentation considering its better
runtime performance and comparable accuracy to graph
based segmentation. The remaining clustered regions are
further filtered to exclude clusters that are either too small or
too large, to exclude noise and large furniture. In this work,
we consider only clusters that include at least 1000 points,
and have a bounding box volume of less than 1 cubic meter.
These values were determined empirically.

2) Segment Propagation: We use a graph matching strat-
egy similar to the method proposed by Couprie et al. [4].
Our approach works as follows. During each frame we use
the aggregated segmentation result until the previous frame
St−1 and the segmentation result from the current frame St to
produce the final segmentation in the current frame S∗t . This
is done by matching segments aggregated until the previous
frame with the segments in the current frame.

Since the robot is mapping the environment and estimat-
ing its trajectory using other sources of information like
odometry and ICP algorithm, we have a prior estimate of
the camera pose available at each frame. We transform the
current frame according to the estimated pose. The segments
from all the previous frames are transformed according to
their respective camera poses and aggregated into one point
cloud. The current transformed frame is then matched against
the aggregated segments to propagate segment labels.

We represent each segment as the centroid of the point
locations corresponding to that segment. In contrast to RGB
images, depth is an important component of RGBD images.
We found that centroid of a segment effectively represents
that segment and using color based information does not
improve result by much. For each segment centroid in the
current frame, we find the nearest centroid in the aggregated
segments. If the centroid in aggregated segments matches
to more than one segment in the current frame, we choose
the segment in the current frame which is the closest to the
corresponding aggregated segment. This results in a two-way
matching of segments. The segments rejected by this strategy
are given new labels.

However, since we are matching against the whole map,
a new segment in the current frame can match against a
far away segment because we match each segment to its
nearest segment centroid in the map. To avoid this, we
perform an additional check by computing the bounding
box Bt of the current segment and the bounding boxes of
the matching segment {Bo} in the map. If the intersection
of the two bounding boxes is small, we do not match the
current segment to the corresponding segment in the map
and instead give it a new label. The intersection is computed
using Jaccard index which is given by Equation 1.

J(Bt,Bo) =
|Bt ∩Bo|
|Bt ∪Bo|

(1)

Given the set of segments having the same label, we
consider the object corresponding to the set of segments to
be completely modeled if no new segment is added to the
same label and the object is outside the view frustum of the
camera. The object point cloud is created by aggregating the
segments from all matched frames transformed according to
their respective camera poses.

Once the object is modeled, non-linear constraints are
added between the object landmarks and the corresponding
robot poses. In the SLAM system, each object O is repre-
sented by the centroid of its point cloud C ∈ R3 (in the
map frame). Given a matching object segment S having the
centroid Cs ∈ R3 (in the robot frame) and the corresponding



robot pose X =

[
R t
0 1

]
, the object measurement function

f(X,O) is given by

f (X,O) = RC + t (2)

f (X,O) transforms the object centroid in the robot frame.
Assuming a Gaussian noise λ with covariance matrix Λ, Cs

is given by
Cs = f (X,O) + λ (3)

P (Cs|X,O) ∝ exp−1

2
‖f(X,O)−Cs‖2Λ (4)

Constraints added according to the above measurement
model jointly optimizes for the object location and the robot
trajectory. The object recognition (Section II-B) considers
all such objects given by the object discovery and adds
constraints between the matching objects.

3) Object Refinement: In a separate thread, we merge
different objects given the current robot trajectory and object
location estimate. Each object represented using the CSHOT
descriptor (Section II-B) [25] is matched against other nearby
objects given the current estimated map. Each object is
matched against the nearby objects whose Jaccard index
(Equation 1) is non-zero when compared with the bounding
box of the current object. The matching objects are merged
to form one object. This step helps merging the under-
segmented object parts not matched by segment propagation.
We don’t add object object constraint or perform optimiza-
tion in this step and it only helps in improved object model
generation given the current state of the SLAM solution.

B. Object Representation and Recognition

Each object point cloud given by the object discovery is
uniformly sub-sampled to using a voxel grid with minimum
leaf size equals to 3 cm to generate a set of keypoints K. We
found that using 3 cm as the minimum leaf size gave a proper
balance between the accuracy and the computation time.
The normals at each keypoint is estimated using a radius
of 1 cm. Normal computation utilizes the full point cloud
and not the sub-sampled cloud. Considering a good balance
between the recognition accuracy and time complexity, we
use CSHOT (or SHOTCOLOR) descriptor to describe each
point corresponding to a segment [1], [25]. The resulting
descriptor is denoted as D.

All point coordinates corresponding to the object point
cloud are represented in the global map frame, so that we
can exploit the spatial context while matching a new object
to the stored representations. We store the centroid (in the
map frame) of the un-sampled point cloud C. Each object
O is represented using the keypoints K, CSHOT descriptor
D and the centroid C as shown in equation 5.

O = {K,D,C} (5)

Every new object Oi estimated using object discovery
(Section II-A) is matched to all the nearby objects from
the current map. For every new object we compute the
object representation {Ki,Di,Ci}. Since the object Oi

is considered as a landmark, we can estimate its current
location Ci and uncertainty in the estimate Σi given the
current SLAM solution. We utilize this information (Ci,Σi)
to find out the set of potential objects Ω that are likely to
match to the new object. We consider all the objects Ω whose
centroid lie within twice the covariance radius Σi of the new
object Oi as the set of potential matching objects. More
formally, the set of potential objects (Ω) is given as:

Ω = ∀ω∈Θ

{
(Cω −Ci)

TΣ−1
i (Cω −Ci) < 2

}
(6)

Here the ω and Cω represents a potential matching object
and the corresponding centroid. Θ represents the set of all
objects. Ci and Σi represents the centroid of the new object
and its covariance matrix, respectively.

The new object Oi is matched to a potential object ω ∈ Ω
by finding the correspondences between keypoints Ki of the
new object and the keypoints Kω of the potential object
ω. The correspondences between Ki and Kω are estimated
by finding the nearest neighbors in both directions resulting
in a two-way match. First of all, we compute the nearest
neighbors of feature descriptors Di with respect to all the
feature descriptors Dω belonging to the potential object ω.
The same is done in reverse for all the descriptors Dω in the
potential object with respect to Di. Let the nearest neighbor
of a keypoint k ∈ Ki in ω is ζ. If the nearest neighbor of
keypoint ζ ∈ Kω in Oi is k, we accept that correspondence
between the two objects (two-way match). Those correspon-
dences are then further refined using geometric verification.
If the number of refined correspondences is less than 12,
the object is not considered as a match to the new object.
We found that using 12 reduces the number of false positive
matches. Among all the matching object representations, we
find the object O∗ which has the maximum number of inlier
correspondences with respect to the new object Oi.

Assuming that most of the objects don’t move during the
mapping time, we use the spatial context stored with the
object to make the search more efficient. The representations
are searched in the order of geometric distance ‖Ci −Cω‖
from the new object location. In case the new object does
not match to any of the stored representations, we assume
that it is an unseen object and save its representation to disk.

In case we find a match to the new object, the two major
use cases are as follows:
• If the matching object is seen after a certain period of

time when the robot returns to the same location, we
declare it as loop closure detection.

• If the matching object is one of the under-segmented
object parts, we add constraint between the under-
segmented part and the new object in order to merge
them as the optimization progresses. It is used by object
refinement (Section II-A.3) thread to generate a refined
model.

Given the new object Oi, the matching object O∗, the
centroid of the new object Ci and the centroid of the
matching object C∗, we add a non linear constraint between
the new object and the matching object.



The object-object measurement function h (O,O∗) is
given by,

h (Oi,O
∗) = C∗ (7)

The ideal distance between C∗ and Ci should be zero since
both the centroids belong to the same object separated apart
due to the error incurred by SLAM or object discovery.
Assuming Gaussian measurement noise γ with covariance
matrix Γ,

Ci = h (Oi,O
∗) + γ (8)

P (Ci|Oi,O
∗) ∝ exp−1

2
‖h (Oi,O

∗)−Ci‖2Γ (9)

In both the cases, loop closure detection or object refinement,
the non linear constraint tries to minimize the gap between
matching object and the new object. Minimizing the distance
between the new object and the matching object gives better
object models and at the same time optimizes the robot
trajectory.

III. EXPERIMENTAL RESULTS

Fig. 3: The robot and a snapshot of the scene where the
experiment was conducted.

A. Robot Platform

The robot platform used in this work consists of a Segway
RMP-200 mobile base, which has been modified to be
statically stable. It is equipped with a SICK LMS-291 for
obstacle avoidance and navigation, although not used for
this work. Kinect depth camera is used to collect point
cloud information. Computation is performed on an on
board laptop; however, our experiments are run on desktop
machines using log data gathered from the robot. To evaluate
our system, we collected data from the Georgia Tech Institute
for Robotics and Intelligent Machines. The floor plan of
the institute is shown in Figure 7c and 8c. The robot and
a snapshot of the scene is shown in Figure 3.

B. Object Discovery

In an experiment, the robot is tele-operated along a
trajectory shown in Figure 4a to test the object modeling
capabilities. Twelve objects were used in this experiment.
Figure 4b shows one particular frame from the trajectory
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Fig. 6: Precision and Recall curves of Object Discovery

#Objects
#True Positive Percentage Reduction

Objects Discovered in #Objects Discovered
after Object Refinement

1 12 9 30%
2 5 4 27.28%
3 5 4 24.56%

TABLE I: Number of true positive objects discovered and
the effect of object refinement for merging under-segmented
objects.

which shows the objects kept on the table. Figure 4c shows
the corresponding object segments estimated by segmenta-
tion propagation (Section II-A.2). Figure 4d shows the same
frame with object labels given to discovered objects after
object refinement (Section II-A.3). Each color represents a
different object. The objects labels are well defined with each
label representing a different object. Labeling error in the
back of the left chair is due to per-frame segmentation error
which gives it a new label. However the segmentation errors
are not propagated across many frames.

Figure 5 shows the top four objects discovered sorted by
number of frames it is seen in. Figure 5a shows the image of
the discovered objects and figure 5b shows the correspond-
ing reconstructed model. We found that the noisy objects
detected due to segmentation failures are not propagated
across many frame and the quality of the discovered object
is directly proportional to the number of frames it is seen
in. This is analogous to the 3D point where a point visible
from many images has a well defined location and it is more
likely to be seen in a new image. Similarly an object seen
across many frames is better modeled and it is more likely to
recognize this object in a new frame. Assuming 12 objects,
Figure 6 shows the precision and recall curves representing
the quality of the retrieved objects when retrieved according
to the number of frames they are seen in. As we can see most
of the true positive objects are seen across many frames. In
general, storing top 15 objects includes all the true positive
discovered objects.

Table I shows the results of object discovery and the
effect of object refinement for merging under-segmented
objects. Row one represents the object discovery experiment
where the robot is tele-operated along a trajectory shown
in Figure 4a. The remaining rows correspond to the loop
closure experiments described in Section III-D. As we can
see the from the results, the object discovery pipeline is able
to discover most of the objects used in the experiments. The
number of discovered objects on an average is reduced by



(a) (b) (c) (d)

Fig. 4: Various stages of the object discovery pipeline. (a) The map of the scene and the trajectory along which the robot
is tele-operated. (b) One particular frame from the trajectory showing the objects kept on the table. (c) The corresponding
object segments estimated by segmentation propagation (Section II-A.2). (d) The same frame with labels given to discovered
objects after object refinement (Section II-A.3). Each color represents a different object.

(a)

(b)

Fig. 5: The top four objects discovered sorted in an descending order of the number of frames it is seen in. (a) Snapshot of
the discovered objects. (b) The corresponding reconstructed object models.

25% on using object refinement which merges the under-
segmented object parts.

C. Object Recognition

Luis A. Alexandre evaluated different 3D descriptors for
object and category recognition and showed that CSHOT (or
SHOTCOLOR) worked the best considering its recognition
accuracy and time complexity [1], [25]. CSHOT has an
object recognition accuracy of 75.53% [1]. While doing
object recognition we only consider the objects which lie
within twice the uncertainty radius of an object (Equation
6). It helps in reducing the false positive matches. Other
than this we assume that the objects do not move during the
experiment and are non-repetitive (except chairs). All these
increase the recognition performance. We do not explicitly
remove the false positive data association and assume it to
be unlikely considering the uncertainty constraint and static,
non-repetitive assumption.

D. Loop closure detection

To test the loop closing capabilities, the robot is tele-
operated in the cubicle area forming a loop as shown in
Figure 7c and 8c. In the first experiment, the robot moves
through the atrium twice with objects kept on the table.

Objects kept on the table are used as landmarks when closing
the loop. Figure 7c shows the approximate trajectory on
which the robot is run.

In Figure 7a we see the robot trajectory estimated using
only odometry and ICP. Object landmarks are not used.
There is an error in the bottom right section when the
robot returns to the same location. Loop closures fails to
be detected with ICP alone. Figure 7b shows the robot
trajectory estimated when object landmarks are used for loop
closure. The object-object constraints joins the bottom right
location when loop closure is detected. Figure 7d shows the
covariance determinant of the latest pose when using objects
for loop closure as compared to not using objects. In the left
plot, we see that the covariance determinant keeps on rising
where as the in the right plot, we see a sudden fall in the
value of covariance determinant representing a loop closure.
The actual values of the determinant depends on the noise
model used.

In the second experiment, the robot is tele-operated for a
longer time period to form longer length trajectory. Figure
8c shows the approximate trajectory of this run.

In Figure 8a we see the robot trajectory estimated when
using no object landmarks. There is an error in the estimated
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Fig. 7: Trajectories estimated with and without using objects as landmarks during loop closure. (a) Robot trajectory estimated
when using no object landmarks. There is an error in the bottom right section when the robot returns to the same location.
(b) Robot trajectory estimated when using object landmarks for loop closure. The object-object constraints joins the bottom
right location when loop closure is detected. (c) Shows the approximate ground truth trajectory w.r.t the floor plan. (d)
Covariance determinant of the latest pose w.r.t time when not using objects (left) as compared to when using objects for
loop closure (right). There is a sudden fall in the value of covariance determinant due to a loop closure event.

(a) (b) (c)

Fig. 8: Trajectories estimated with and without using objects as landmarks during loop closure. (a) Robot trajectory estimated
when using no object landmarks. (b) Robot trajectory estimated when using object landmarks for loop closure. (c) Shows
the approximate ground truth trajectory w.r.t the floor plan.



trajectory due to the error in odometry and ICP estimates
propagated across the full trajectory. Figure 8b shows the
robot trajectory estimated when using object landmarks for
loop closure. Object-object loop closure constraint is able to
reduce the error in the trajectory estimate.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an approach to simultaneously
discover objects and produce their models along with the
map. Objects provide a richer description of the environment
and can be more effective for data association. We use the
discovered objects as landmarks and the data association
among them assist with the loop closure in large environ-
ments. The pipeline follows an online learning framework to
avoid any pre-training on the object models.

Our approach is able to discover good quality object
models in an unsupervised manner and use those objects
as landmarks during loop closure. We showed the results of
object discovery (Table I), the discovered models (Figure 4)
and compared the resulting models with the actual snapshot
of the objects (Figure 5). We also showed that using object-
object constraints during loop closure estimated a better
trajectory as compared to the trajectory estimated when not
using the object-object constraints. The comparison of the
robot trajectory estimated with and without the use of object
landmarks is shown in Figures 7 and 8.

However in the existing pipeline, we cannot handle mov-
ing or repetitive objects. We plan to integrate JCBB to handle
false positive matches caused by moving and repetitive
objects [19]. Moving objects can also be handled using the
expectation maximization technique as proposed by Rogers
et al. which allows a landmark to be dynamic [13]. Better
object discovery techniques can be used to detect repetitive
objects and cluster them [3]. Repetitive or moving objects
when detected can only be used to coarsely localize a robot
depending on the object’s mobility region. For example,
objects like a kitchen utensil is generally found in a kitchen
and can be used to infer the robot’s coarse location inside
the house but it cannot be used to precisely estimate its pose.
As a future work, we plan to include a variable representing
the object’s mobility in order to achieve robust localization
in the case of moving objects.

We also plan to add interactive object modeling and
labeling system for the objects where a user can add semantic
information about the discovered objects like the actions
which can be performed on this object [26].
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