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Abstract

Large scale reconstructions of camera matrices and point clouds have been created using structure
from motion from community photo collections. Such a dataset is rich in information; we can interpret
it as a sampling of the geometry and appearance of the underlying space. In this dissertation, we encode
the visibility information between and among points and cameras as visibility probabilities. The condi-
tional visibility probability of a set of points on a point (or a set of cameras on a camera) can be used
to select points (or cameras) based on their dependence or independence. We use it to efficiently solve
the problems of image localization and feature triangulation. We show how the conditional probability
can be combined with other measures to prioritize a set of points (or cameras) for matching and use it
for fast guided search of points for the image localization problem. We define the problem of feature
triangulation as the estimation of 3D coordinate of a given 2D feature using the SfM data. Our approach
can guide the search to quickly identify a subset of cameras in which the feature is visible.

Other than image localization and feature triangulation, bundle adjustment is a key component of
the reconstruction pipeline and often its slowest and the most computational resource intensive. It
hasn’t been parallelized effectively so far. We also a present a hybrid implementation of sparse bundle
adjustment on the GPU using CUDA, with the CPU working in parallel. The algorithm is decomposed
into smaller steps, each of which is scheduled on the GPU or the CPU. We develop efficient kernels for
the steps and make use of existing libraries for several steps. Our implementation outperforms the CPU
implementation significantly, achieving a speedup of 30-40 times over the standard CPU implementation
for datasets with upto 500 images on an Nvidia Tesla C2050 GPU.
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Chapter 1

Introduction

The advent of internet based photo sharing sites like Flickr and Picasa has lead to the creation of
internet scale photo collections commonly known as community photo collection. More than 80 million
photos are uploaded to the web everyday [19]. A Flickr search on “St. Peters’ Basilica” results in
thousands of images from many view points. Figure 1.1 shows a screenshot of a result page. Community
photo collection (CPC) is a rich source of visual information about the world. It contains large numbers
of photographs of popular locations which are interesting from a tourist’s point of view. It implicitly
models a region as a collection of interesting landmarks. There is high density of images in and around
popular locations like Taj Mahal or Eiffel Tower and low density of images in less popular locations like
a street in Delhi. Each image may contain additional information in the form of metadata like date/time
of the capture, textual tags describing the image location, the object being photographed. In some of
the cases, GPS information is also available (typically 10-15% of the images [19]). Images are also
captured under different weather and illumination conditions using wide variety of cameras. Snavely
[84] termed this dataset as the Distributed Camera, because millions of images are being uploaded at
each moment capturing most of the places during any time of the day and it acts as a visual record
of our world [60]. Such large collection of varied images captured all over the world has lead to the
development of many data driven algorithms. CPCs have created new opportunities and challenges to
the computer vision community. It has created new applications in the area of crowd sourced modelling
[4, 19], augmented reality [6] and photo tourism [77]. Researchers are able to exploit the internet photo
collection for estimating GPS coordinates of a location given its image [31] and to in-paint a scene using
millions of photographs [30].

3D reconstruction using structure from motion (SfM) is one of the key challenges in computer vision.
SfM is used to create 3D models using images of it. Rich community photo collections have created new
opportunities in the area of large scale reconstruction and crowd sourced modelling and its applications
in 3D visualization and localization. Photosynth is one such rich application which uses the 3D output
reconstructed using CPCs to provide virtual and immersive photo-tour of a location [77]. Recently there
has been impressive progress in the area of large scale reconstruction using community photo collections
[4, 19]. It has lead to the creation of city scale reconstructions of places like Rome, Dubrovnik and
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Vienna. The reconstructed output consists of many cameras and points. For example, the reconstructed
output of Trevi Fountain in Rome contains over 2000 cameras and 656000 points. The 3D coordinates of
reconstructed points as well as translation and rotation parameters of reconstructed cameras are known
in a common coordinate frame. The set of reconstructed points is generally called as a point cloud.
The point cloud representation can be seen as a compact summary of the scene consisting of addtional
geometric and visibility information. For each point, we know the cameras it is seen in and for each
camera, all the points that it sees.

We use the following terms to describe the entities involved unambiguously. An image is a photo-
graph of the space which contains several features. A feature is a 2D interest point with an associated
descriptor. The SIFT descriptor is commonly used by the SfM community [46]. The image gets up-
graded to a camera when its projection matrix is known. Camera is an image whose projection matrix
(intrinsic and extrinsic parameters) is known. Similarly, a feature gets upgraded to a point when its 3D
coordinates are known. (Li et al. introduced the terms feature and point with this meaning [42].) We
use the term point to refer to a 3D point and feature-point to refer to a 2D feature. An SfM dataset
thus contains a number of cameras, points, and their mappings. Additional images and features of the
same space are easily available from the internet and other sources. Image localization problem aims
to estimate the camera from an image. Similarly, the feature triangulation problem aims to estimate the
point from a feature.

In this thesis, we improve several aspects related to the process of structure from motion from com-
munity photo collection. We exploit the geometric and visibility information available in SfM recon-
structions to solve the problem of image localization and feature triangulation. We also propose a hybrid
implementation using CPU and GPU to solve the problem of bundle adjustment which acts as a major
bottleneck in the large scale reconstruction process. In the following section, we discuss each of the
major aspects involved in detail.

1.1 Structure from Motion

In computer vision, Structure from Motion (SfM) refers to the process of computing the three-
dimensional structure using the motion information available in images or videos captured from dif-
ferent view points [86]. Traditionally, 3D points are triangulated given the camera poses of the input
images. Conversly, if we have known 3D point coordinates, the camera pose of the given image can
be estimated using pose estimation. However, in structure from motion neither camera pose nor point
location is available. This is an example of a circularly related problem. SfM estimates the camera
poses and the scene structure simultaneously without requiring either to be known a priori, from the
information about common points visible in the images.

2



Figure 1.1: Result page for a Flickr search of “St. Peters Basilica”

1.1.1 Two View Structure from Motion

Two view SfM is closely related to the depth perception in the binocular human vision. Using images
formed by an object in two eyes, we are able to roughly triangulate its distance in the real world. To
do this, our brain implicitly computes the correspondences between the two images, so that we know
which point in the two images correspond to the same 3D location. Our brain uses the distance between
the two eyes (similar to relative camera pose) to triangulate the 3D location of the object.

The same technique can be applied to solve the problem of two-view SfM. Given two images of
the same location, we find matching pixels in the two images and use those matches to estimate the
pose of one image relative to the other. Using the relative pose, we estimate the 3D location of a point
corresponding to each pair of matching pixels. To do so, we shoot a 3D ray from each camera location
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through their respective matched pixels and intersect the rays to get a 3D point location. Figure 1.2
depicts the triangulation of a point using two views. The basic algorithm to estimate 3D point for
two-views consists of these three steps,

• Estimate the relative camera pose between the two views (pose estimation).

• Identify common points in the two images.

• Project rays from the common points. Its intersection is the desired point (triangulation).

The SfM process can be divided into two basic categories of calibrated and un-calibrated condition.

1.1.1.1 Calibrated Case

Conventionally, 3D world is reconstructed using cameras calibrated through an offline process. Cal-
ibration is performed by observing a pattern of points whose position in 3D world is known and it can
easily be used to estimate 3D-2D correspondences. Using the correspondences, we can estimate the
camera pose with respect to the calibration pattern [88]. For the case of binocular stereo, realitve cam-
era pose between the two views is estimated using the calibration pattern. Given the relative camera
pose, epipolar constraint is used to estimate 2D-2D correspondences in the two images and the points
are estimated using triangulation [29]. Two-view SfM in the case of calibrated cameras can be extended
to multiple views. It is known as multi-view stereo. Multi-view stereo is used to reconstruct 3D model
from images taken from previously known view points under calibrated conditions.

1.1.1.2 Un-calibrated Case

Structure from motion using uncalibrated views is relatively a tougher problem than SfM using
calibrated views. Recently there has been a growing interest in calibrating cameras using the information
available in the images itself without using any external calibration pattern. In the case of two-view SfM,
pose of an image relative to the other image is estimated by finding 2D-2D correspondences between the
two images. Given the correspondences, five-point algorithm is used to figure out the relative camera
pose of two views [40, 55]. The 2D-2D correspondences are triangulated to estimate 3D points. Similar
technique can be extended to multiple uncalibrated images which is commonly available in community
photo collections. Large scale reconstruction using un-calibrated cameras is a challenging problem.

In the below section, we discuss the large scale reconstruction pipeline used by Photosynth [77] and
many modern SfM methods to create point cloud models.

1.1.2 The SfM Reconstruction Pipeline

Large scale sparse 3D reconstruction from community photo collections using the structure from
motion pipeline is an active research area today. The process poses many algorithmic challenges due to
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Figure 1.2: Two View Structure from Motion

large variations in the weather, illumination conditions, camera type and the lack of geographic infor-
mation. Reconstructing multiple images using structure from motion can be divided into two distinct
stages: (a) feature matching or correspondence estimation and (b) incremental structure from motion.
We now explain each one of them in brief:

• Image Matching: Local features have to be computed in each image which are matched between
every two image. In order to take into account the large variations, SIFT keypoint detector and de-
scriptor [46] is used to find features in each image. SIFT descriptors are invariant to scale changes
and are quite robust to other variations. Therefore, it is well suited to find correspondence across
images. SIFT ratio test based matching is used to find correspondence between two images [46].
The pair-wise image matches are geometrically verified using epipolar constraints in RANSAC
loop [18]. It removes the outliers which are not geometrically consistent and gives a realtive pose
within all pair-wise configurations. Once pairwise matching and geometric verification is done,
all the matching features corresponding to the same 3D point are organized into a track.

• Incremental structure from motion: Given the tracks of matching features, we estimate the 3D
point and camera pose using incremental SfM. Initially, we find the best matching pair of cameras
which are optimally seperated and reconstruct it using the two-frame reconstruction method. Rest
of the images are added incrementally and reconstructed. Figure 1.3 visualizes the result of recon-
struction after every set of images are added. After every increment, the points and cameras are
optimized using a non-linear optimization called bundle adjustment which minimizes the sum of
reprojection error across all registered images. We discuss bundle adjustment in detail in the later
part of this chapter. Figure 1.4 shows the flowchart of the reconstruction pipeline as explained.

One of the primary issues with large scale structure from motion problem is its sclability to large
image collections. Correspondence estimation and global optimization using bundle adjutment are one
of the major computational bottleneck in the whole process. In the recent years there has been tremen-
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Figure 1.3: From Left to Right: Images of Trevi Fountain being reconstructed using incremental struc-
ture from motion(from Snavely[75])

dous improvement on this front. Starting from registering 3000 photos on 24 PCs using two weeks of
computation as a part of Photo Tourism project, researchers are now able to reconstruct 3 million images
on a single PC within 24 hours.

Structure from motion from community collections has created sparse point clouds and images of
many large monuments and other spaces. A typical SfM dataset contains many points and several
camera images. A few millions of points and a few thousand images are common today. The visibility
of each point in its track of images is recorded, along with the SIFT descriptor in each. The camera
matrices and point coordinates are known in a common frame. This represents a rich sampling of the
geometry and appearance of the space. In this thesis, we explore the probabilistic structure of visibility
induced by the points and images of an SfM dataset. We define the visibility probability of points and
images and the joint visibility probability among points and among cameras, using which we estimate
the conditional visibility probability of a set of points/cameras on other points/cameras. We define the
probabilities in detail in Chapter 3. We use visibility probabilities and joint visiblity probabilities to
efficiently solve the problem of localization and triangulation.

An SfM dataset contains a number of cameras, points, and their mappings. Additional images and
features of the same space are easily available from the internet and other sources. Image localization
aims to estimate the camera from an image. Similarly, the feature triangulation problem aims to estimate
the point from a feature. We now describe each one of these in detail.

1.2 Image Localization

Given a query image, image localization is used to answer question “Where am I?”. The answer
to this question can be provided either at a semantic level describing the location where the image is
captured or in a geometric sense where the image location is estimated relative to other images or the
model in a common frame. It is an important problem in the computer vision and robotics communities.
Image Localization is defined as estimating the camera pose or parameters given several matching points
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with respect to the world. The points being matched either belong to already localized 2D image or to
3D points belonging to a point cloud model. It is also known as camera resectioning. Given an image
of a 3D scene, image localization is used to estimate the camera’s position and orientation relative to
the 3D scene. In this thesis, we specifically tackle the problem of localizing an image with respect to
the SfM model. Localizing a new image to an existing SfM data set has attracted some recent attention
[21, 32, 42, 64]. Image localization has numerous applications in the area of computer and robotic
vision. It can be used during initial localization step in the process of incremental structure from motion.
Instead of matching an image relative to other images, the new query image can be matched relative to
the reconstructed model. Image localization can be done using these two major steps:

• Feature Matching: This is an important step of the localization pipeline. The 2D features in an
image are matched to 3D points in a model to estimate the absolute orientation with respect to the
model. In the reconstruction pipeline, pair wise image matches are done to estimate the relative
pose between images. Estimating pair-wise matches is one of the major computational bottleneck
in the process of large scale structure from motion. 2D points in the case of relative pose and 3D
points in the case of absolute pose act as control points using which we estimate the camera pose
by minimizing the re-projection error. Ideally, it is important to match several 2D or 3D points in
a computationally efficient manner to attain optimal camera pose. An improvement in the area of
correspondence estimation can have a large effect on the scalibitliy of the reconstruction pipeline.
In this thesis, we use only 2D-3D correspondences to estimate absolute pose with respect to the
SfM model. We use the visibility and geometric information available in the SfM dataset to
efficiently guide the search for quickly estimating 2D-3D correspondences.

• Camera Pose Estimation: Given the correspondences, direct linear transform (DLT) is used to
estimate the camera projection matrix [29]. The projection equation is represented by x ' PX

where X is a vector of 3D points, x is the corresponding vector of 2D features and P is the
estimated projection matrix mapping 3D points to the corresponding 2D features. P is estimated
by solving the equation x×PX = 0 using singular value decomposition. It requires a minimum
of six correspondences to estimate the projection matrix using DLT. We discuss the DLT method
in detail in chapter 4. CPC is inherently noisy and can often result in false correspondences. DLT
method is noise sensitive and false correspondences can introduce error in the resultant camera
pose. Therefore, DLT it applied in a RANSAC loop to make it more robust to outliers [18].
RANSAC tries to remove outliers by assuming that the inilers can be explained using a model
where as outliers are independent of each other and do not follow any model. RANSAC iterates
by randomly selecting 6 points which are used to fit a mathematical model. In each iteration,
errors of all the other points are estimated relative to the fitted model and classified into inliers or
outliers based on some threshold. After some iteration, the model which had maximum number
of inliers is considered as the desired model and is re-evaluated using all the inliers.
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1.3 Feature Triangulation

The problem of feature triangulation is defined as estimating the 3D coordinates of a given 2D
feature. This problem is a dual of the image localization problem. Each camera sees multiple points and
each point is seen by multiple cameras. Each image that is localized is matched to many 3D points and
similarly, each feature that is triangulated has to be matched to many other features. Similar to image
localization, an image feature which has to be triangulated is matched to nearby images. It uses a track
of matching 2D features and the camera pose of images where the features are found to triangulate a
3D point. Traditionally, each image is matched with every other image to find pair-wise matches which
are organized into tracks. This is usually done in a pre-processsing step. Performing pair-wise matching
of all the images is a computationally expensive process. In this thesis, we introduce the problem of
feature triangulation as estimating the 3D coordinates of a 2D feature using the SfM data.

• Feature Matching: Given a query 2D feature, our algorithm searches the space of cameras for
visibility of the query feature using visibility information. As a result, a track of matching features
is estimated. In contrast to the pair-wise matching approach where all the images are initially
matched and then organized into tracks, we directly estimate a track of matching features and
triangulate it to estimate the 3D point.

• Point Estimation: Given a track of 2D features and the corresponding camera poses, a 3D point
is estimated such that it minimzes the reprojection error. That is, when the 3D point is projected
back into the image using camera parameters, the difference between actual feature location and
projected feature location is minimum. For multiview triangulation, we minimize the sum of re-
projection errors across all images. Similar to the problem of localization where given the 2D and
3D correspondences, the camera projection matrix is estimated, here we estimate the 3D coordi-
nate of a point given its projection coordinates and the corresponding projection matrices. More
formally, we have 2D coordinates x and the projection matrices P available, in the projection
equation x ' PX. We triangulate the 3D point X by decomposing the equation x×PX = 0

using singular value decomposition.

In this thesis, we solve the problem of triangulation efficiently using the visibility probabilities to
guide the search for cameras for quickly estimating correspondences across multiple images. Figure 1.5
depicts the process of localization and triangulation. We use the probability structure to efficiently solve
the dual problem of localization and triangulation.

1.4 Efficiency of SfM

Correspondence estimation and the global optimization of 3D structure and camera parameters are
the primary computational bottlenecks in large scale reconstruction process. Recently, computer vision
researchers have tried optimizing the correspondence estimation or image matching step by distributing
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the process over multiple compute cores or GPUs. Agarwal et al. addressed this problem by distributing
the visual word based matching process over 500 compute cores to reconstruct 1M images of Rome in
a day [4]. Frahm et al. used GPUs along with CPUs to reconstruct 3M images of Rome in less than 24
hours [19].

Given the estimated camera poses and triangulated points, the global optimization of cameras and
points using bundle adjustment is another important step. It is a major computational bottleneck in the
SfM pipeline. It ensures that the error in pose estimates does not get accumulated over the sequence.
Bundle Adjustment (BA) is used to jointly optimize camera and point parameters. Bundle adjustment
is an iterative step, typically performed using the Levenberg-Marquardt (LM) non-linear optimization
scheme. It performs robust non-linear minimization of the re-projection error to accurately recover
structure and motion. Bundle adjustment is one of the primary bottleneck of the SfM, consuming about
half the total computation time. For example, reconstruction of a set of 715 images of Notre Dame
data set took around two weeks of running time [77], dominated by iterative bundle adjustment. The
BA step is still performed on a single core, though most other steps are performed on a cluster of
processors [4]. Speeding up of BA by parallelizing it can have a significant impact on large scale SfM
efforts. The computation requirements of BA grows rapidly with the number of images. However, the
visibility aspects of points on cameras places a natural limit on how many images need to be processed
together. The current approach is to identify clusters of images and points to be processed together
[78]. Large data sets are decomposed into mildly overlapping sets of manageable sizes. An ability
to perform bundle adjustment on about 500 images quickly will suffice to process even data sets of
arbitrarily large number of images as a result. We focus on exactly this problem in this thesis. We
provide a hybrid implementation of sparse bundle adjustment with CPU and GPU working together to
achieve a speedup of 30-40 times on an Nvidia Tesla C2050 GPU on a dataset of about 500 images. We
discuss its implementation in detail in Chapter 6.

1.5 Contributions of the Thesis

We improve various aspects related to the large scale reconstruction pipeline. In the following section
we summarize our contributions as a part of this thesis.

• We define a probabilistic framework using the cameras and points available in the SfM output to
effectively guide point and camera search in the case of image localization and feature triangu-
lation respectively. We encode the visibility information between and among points and cameras
as visibility probabilities. The conditional visibility probability of a set of points on a point (or
a set of camreas on a camera) is used to select points (or cameras) based on their dependence or
independence. The probability framework aids in estimating the priority of points and cameras
based on their dependence on each other, distances, etc.
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• Image localization uses a few 3D points to 2D feature mappings in the query image to estimate
its camera parameters. It searches the space of points in the SfM dataset for match with the
query image. We use the conditional visibility probability among points to effectively guide these
searches. Our probability-guided exploration generates RANSAC inliers in high proportions as
the matching proceeds. Our localization method successfully registers as many or more new
images as the prior work. We reduce the number of nearest neighbor searches to 10-20% of what
was done by Li et al. [42]. Due to the improved accuracy, we only need to generate 25% of
matches as Sattler et al. [64].

• We define the problem of feature triangulation as the estimation of 3D coordinate of a given 2D
feature using the SfM data. Feature triangulation identifies a few cameras in which the query
feature is visible for triangulation. It searches the space of cameras for visibility of the query
feature. We use the conditional visibility probability among cameras to effectively guide these
searches. Our scheme can match 4 new images per second on a high end workstation. Our feature
triangulation method increases the point density at typical locations by 30-50%. It is especially
good at identifying points in regions with repetitive appearance, where the 2D-2D match of SfM
performs poorly.

• We develop a practical time implementation of bundle adjustment by exploiting the computing
resources of the CPU and the GPU. We decompose the LM algorithm into multiple steps, each
of which is performed using a kernel on the GPU or a function on the CPU. Our implementation
efficiently schedules the steps on CPU and GPU to minimize the overall computation time. The
concerted work of the CPU and the GPU is critical to the overall performance gain. The execu-
tions of the CPU and GPU are fully overlapped in our implementation, with no idle time on the
GPU. We achieve a speedup of 30-40 times on an Nvidia Tesla C2050 GPU on a dataset of about
500 images.

1.6 Outline of the Thesis

• Chapter 2: This chapter reviews the related background work in the area of SfM, image localiza-
tion and feature triangulation. We discuss the state of art techniques in these areas.

• Chapter 3: In this chapter we discuss the visibility probability and joint visibility formulation
defined using the points and cameras in the SfM Dataset.

• Chapter 4: In this chapter we model the image localization problem using joint visibility proba-
bility to estimate camera pose using few 3D-2D correspondences.

• Chapter 5: Similarly, we introduce the feature triangulation problem and propose an algorithm
to estimate 3D point of a given 2D feature using visibility probability based guided search in the
camera space.
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• Chapter 6: In this chapter, we explain a hybrid and practical time implementation of bundle
adjustment by exploiting the computing resources available on CPU and GPU.

• Chapter 7: In the last chapter, we conclude the thesis by discussing our contributions, existing
problems with the model and the possible future work in this direction.
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Figure 1.4: Large scale reconstruction pipeline using incremental structure from motion (Image Cour-
tesy: Noah Snavely[75])
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Figure 1.5: From Left to Right: Image depicting the localization and triangulation process respectively
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Chapter 2

Related Work

In this chapter, we discuss the related work pertinent to the area of structure from motion, image
localization, feature triangulation and bundle adjustment.

The geometric algorithms used in computer vision have its roots in the field of photogrammetry [85].
Photogrammetry is the science of taking 3D measurements of the world through photographs. One
of the important problems in photogrammetry (or stereo-photogrammetry) is of estimating the three-
dimensional coordinates of points on an object given multiple images from different view points. This
problem is also known as estimating Structure (points) from Motion (of cameras). Reconstructing 3D
world using images or videos is one of the core computer vision problem. Researchers have extensively
worked on this problem. The related work in this area can be broadly divided into two categories: (a)
Calibrated case and (b) Uncalibrated or Semi-calibrated case. We now discuss each one of these in
detail.

2.1 Calibrated Reconstruction

Earlier research in the area of 3D reconstruction involved known camera matrices. The simplest
problem in the area of calibrated reconstruction is binocular stereo or two-view SfM. Two-view SfM es-
timates the depth map of a scene using two images of the same scene seperated by some distance. Tech-
niques to solve this problem include finding pair-wise correspondences and the corresponding matching
costs between the pixels of the two images [8, 29]. Epipolar constraint is used to reduce the search
space to a one dimensional line. The estimated depth of each matching pixel is then optimized using a
global optimization which ensures smoothness in the world. Graph-cut based techniques were explored
to solve this problem [9]. It models the pairwise smoothness in depth estimates and individual depth
estimates of each pixel which is solved using a mincut algorithm. Scharstein and Szeliski present a
comprehensive and comparative evaluation of several stereo matching algorithms [66].

Two-view SfM was later extended to multiple views. Multi-view stereo is used to reconstruct 3D
model from images taken from previously known view points under calibrated conditions. Traditional
multi-baseline stereo method was first proposed by Okutami and Kanade [57]. This approach estimated
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the correct depth by taking into account the information available in multiple stereo pairs which is
used to remove ambiguity. Volumetric approaches in this area represented the 3D scene using different
models. Seitz et al. represented the scene as a set of discrete voxels which are filled using the pixel
information of the images in which the voxel is projected [69]. Kutulakos et al. uses space carving tech-
niques to reconstruct 3D model using multiple photos [38]. Some methods estimated the depth map of
each image which are later merged to reconstruct the model [81]. Many of these techniques also enforce
a photo consistency measure or a shape prior [68]. Photo consistency measure ensures an agreement
between the model and its projections in the image. Shape priors constrain the 3D model using some
pre-defined shape. It helps in the precise estimation of the geometry in low textured regions. Local
smoothness constraints are also an example of local shape priors. These can be effectively modelled
using graphs [9]. Seitz et al. present a quantitive comparision of different multi view stereo algorithms
and show the results on six benchmark datasets [68].

More recently, multi-view stereo techniques have also been used with internet photo collections.
Goesele et al. estimates the depth map for an image by doing view selection to find nearby cameras
to match and uses SfM 3D points as a base to grow surface on these points [27]. Furukawa et al.
decomposed the collection into different clusters which are processed in parallel and then merged [24].

2.2 Un-calibrated and Semi-calibrated Reconstruction

Reconstructing 3D world using uncalibrated views is a challenging problem in computer vision. Tra-
ditionally, this problem is solved by calibrating cameras through an offline process [88] and using the
calibrated cameras to reconstruct 3D geometry as explained in the previous section. Recently, computer
vision researchers have successfully calibrated images using the information available in the images
only with no external calibration pattern used. This is done by estimating the pair-wise correspondences
within all pairs of images and using those correspondences to find relative pose. Five point algorithms
have been developed to estimate the relative camera pose of two views given intrinsic parameters (fo-
cal length, radial distortion etc.) [40, 55]. It uses five correspondences to estimate the relative pose.
Calibration is completed when we estimate global pose of all the cameras in a common frame. Estimat-
ing global pose of many images is a challenging problem. This area can be roughly divided into two
sub-areas on the basis of the data source and the calibration condition.

2.2.1 Reconstruction using Video

Most of the work in the area of multi-view reconstruction focussed on semi-calibrated or fully cali-
brated conditions. For example, frames of a video is a more controlled and organized image collection
than the unorganized internet image collection. So, reconstructing 3D world using video frames is
an easier problem than the reconstruction of internet photo collection. Researchers have exploited the
temporal order of the video and its correlation to spatial coherency of frames to provide real-time recon-
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struction from video [58]. Using the spatial coherency of frames, features are tracked across multiple
frames. Therefore, it is easier to find correspondence across multiple frames in a video and hence rela-
tive pose estimation can be done in real time. Camera location of each frame is estimated using Kalman
filter [36] using the measurements accumulated over time to optimize the current estimate. Depth map
of each frame is estimated and merged to give us the final reconstruction. Similar problem is solved
in the case of robot navigation. Simultaneous localization and mapping (SLAM) in the case of robotic
vision is similar to solving SfM problem using videos. Davison et al. [15] demonstrate a real time
vision-based SLAM system which has an active approach to mapping and measurements so that least
number of image processing operations are done. Kaess et al. proposed a Bayes tree representation and
its application is robot trajectory optimization [34]. They represented the non-linear optimization and
matrix factorization as an update in the probability densities or the structure of the Bayes tree. Klein
and Murray developed a parallel tracking and mapping system and showed its application in the area of
augmented reality [37].

2.2.2 Reconstruction using Internet Photo Collection

With the advent of powerful feature matching techniques, reconstructing unorganized and uncon-
trolled photo collection using Internet imagery has gained recent attention from the computer vision
community. Brown and Lowe [10] were one of the first to develop SfM systems that successfully re-
constructed unordered image sets captured by a single photographer. Schaffalizsky and Zisserman [65]
proposed a system to organize the unorganized image datasets of a particular location taken from sev-
eral view points. They developed an indexing scheme over the image patches to perform large scale
matching. Two and three view constraints are used to remove erroneous matches. Techniques similar
to these are also used in the recent structure from motion pipelines. SfM algorithms can be divided into
two broad categories. One of them is incremental SfM where we start with small seed reconstruction
and then grow it repeteadly using by adding cameras and points. Another one is batchwise SfM which
considers all the point and camera parameters at once rather than incrementally building up the solution
[77]. We now discuss each one of these in detail.

2.2.2.1 Batchwise SfM

These techniques considers all the camera and point parameters at once and do not order them in any
sequence. It considers all the images as equal. It solves the complete problem in a single batch opti-
mization. One of the earlier methods to solve batch wise SfM includes factorization based approaches
[7, 80]. Factorization methods work by decomposing measurement matrix M = PX into camera ma-
trices P and 3D points X . It requires all the points to be visible in all the views and hence it cannot
handle missing data. Missing data is quite common in community photo collection due to the sparsity
of the scene. Linear reference-plane based technique minimizes algebraic error [63]. The problem with
this approach is that points close to infinity can bias the reconstruction unless a good initiailization is
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provided. L∞ error based optimization was also explored [2]. It minimizes the maximum reprojection
error of the measurements rather than the sum of reprojection error (as in bundle adjustment). The L∞

based optimization is shown to be convex and hence does not depend on a good initiailization . How-
ever, L∞ methods cannot scale to large number of camera and point variables and are not robust to
outliers. Another set of linear methods estimate global camera parameters using pairwise constraints.
These are also not very robust to outliers. Some of the recent methods include linear SfM method by
Sinha et al. [72]. It incorporates vanishing points in estimating camera orientations. Given rotations,
pairwise reconstructions are aligned globally to estimate translation. More recent work by Crandall et
al. used an MRF framework to model the constraints between camera and scene pairs to initialize the
SfM pipeline well [14].

2.2.2.2 Incremental SfM

Most of the recent SfM systems are sequential where starting with a smaller reconstruction, cameras
are added by pose estimation and points by triangulation [4, 19, 77]. Incremental approaches minimize
error propogation using intermediate Bundle Adjustment and multiple rounds of outlier removal. Fre-
quent use of non-linear minimization techniques like bundle adjustment slows down these methods. The
worst case running time of these methods is O(n4) in the number of images. Theses methods do not
treat all images equally, producing different results depending on the order in which photos are consid-
ered. This can results in local minima or large error drift in the final camera/point parameters. Similar
to these, hierarchical systems involve clustering images using agglomerative clustering to form a tree
and reconstructing the tree from leaves to the root, merging nodes at each level [17, 25]. This method
doesn’t select pair of views and it copes better with the error drift. PhotoTourism is the first applica-
tion to create large SfM datasets from unstructured photographs and to interactively browse them using
the points and cameras [77]. However basic SfM method has O(n2) matching complexity as we have
to do all pair-wise image matches to find feature correspondences and it is not scalable to city scale
collections.

Inspired by the progress in document analysis, computer-vision researchers have recently begun
using the idea in the area of content based image retrieval. The idea is to cluster SIFT features in
a photo collection into “visual words”. By representing each image as a collection of visual words,
researchers are able to apply document-retrieval algorithms to efficiently match large dataset of photos.
Agarwal et al. addresses this problem by distributing the visual word based matching process over 500
compute cores to reconstruct 1M images of Rome in a day [4]. Similarly Frahm et al. used GPUs along
with CPUs to reconstruct 3M images of Rome in less than 24 hours [19]. Even after optimizing the
matching step, performing incremental SfM over the whole image collection is prohitively expensive.
Internet image collection are inherently redundant. Many images are taken from nearby locations. So,
it is necessary to find a minimal set of images that best represent the collection. To address this issue,
Snavely et al. constructed skeletal set of the image collection which ensured model completeness and
bounded loss of accuracy as compared to full image set reconstruction [78]. Skeletal set is created
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by finding maximum-leaf spanning tree of the match graph. Li et al. uses GIST based clustering
along with geometric verification to find iconic images that provide a compact scene summary [41].
However, for city scale collections, the size of the compressed sketal or iconic graph can be large too
making the process computationally intesive. This problem is currently being explored. Researchers
have also tried optimizing the bundle adjustment step using better preconditioned conjugate gradient
based optimization which exploits the available sparsity in the scene structure [11, 45, 53]. We will
discuss the detailed related work of bundle adjustment in the later part of this chapter.

2.3 Image Localization

The problem of image based location recognition has received much attention from the computer
vision community in the recent years due to an increase in massive image collection on the internet and
various applications in urban navigation and augmented reality. One of the earliest location recogntion
system was developed by Robertson and Cipolla [62], which uses a database of rectified images of
building facades to determine the pose of the query image. Another work by Zhang and Kosecka [87]
used SIFT features based matching to find the nearest views to the query image and use them to estimate
the camera pose. However these methods focussed on small databases of 200-1000 images.

With the advancement in large scale image retrieval techniques [56, 74], similar methods were em-
ployed in the problem of location recogntion [31, 32, 64, 67, 21]. Schindler et al. [67] first used
informative features to build specific vocabulary tree over a dataset of 30,000 geo-tagged images in
order to solve the problem of city scale location recognition. Fraundorfer et al. [21] proposed distance
augmented visual word based image retrieval which scores each feature by the distance to its nearest
word. Hays and Efros [31] used 6 million geo-tagged images to estimate the location of a new query
image as a probability distribution over the entire earth. This is done by finding out K-nearest neighbors
of the query image in the geo-tagged dataset and using the corresponding GPS coordinates to estimate
the probability distribution.

Image based localization has been studied in the SLAM literature as well. Achar et al. uses modified
bag-of-words approach for image localization in large scale urban environments [1]. Distinctive words
are given higher weights which are used along with a vocabulary tree to find the nearby image for the
given query image. The resulting images are then geometrically validated to get the localization result.
Fraundorfer et al. [20] used visual words based localization algorithm for an indoor environment. SLAM
based methods as mentioned use video sequence of a camera mounted on a robot as an input and do
not take into account the reconstructed SfM output for localization. Another work by Alcantarilla et
al. [5] used noisy camera pose priors available through GPS sensors and the reconstructed SfM output
to predict the set of 3D points visible in the new query image. Chli and Davison [13] proposed active
matching techniques in the context of SLAM algorithms, which resulted in robust, real time matching.

Other than these, many researchers have also explored the usage of compressed scene representation
for better image registration or localization. Li et al. [39] reduced the size of feature set used to represent
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each image retaining the most informative features. Ni et al. [52] uses epitomes of locations created
from videos of different scenes. Similarly in the area of SfM, Li et al. [41] uses iconic scene graph and
Snavely et al. [78] proposed skeletal set to compress the model.

Our work on image localization is closely related to the work of Irschara et al. [32], Sattler et al.
[64] and Li et al [42].

2.3.1 Vocabulary Tree based approach (Irschara et al.)

Irschara et al. [32] used SfM point cloud to generate synthetic images in order to ensure that the
whole model is covered properly and is not just limited to the original views which are a part of the
reconstruction. Original and synthetic views are then combined to form the database for image retrieval
step. They use vocabulary tree to find nearby image from the set of images and use the 3D points
belonging to the features in the retrieved image to form 2D-3D correspondences and use that to estimate
the final camera pose. Figure 2.1 shows the synthetic and original images (left) and an example of image
registered with respect to the SfM point cloud (right).

Figure 2.1: (Left) A SfM point cloud and the original images(shown in blue) and the synthetic im-
ages(shown in red). (Right) An example of image registered with respect to the SfM point cloud

2.3.2 Prioritized Feature Matching (Li et al.)

Li et al. proposed a 3D-2D matching scheme using a prioritization on SfM points for matching points
in the query image [42]. They explore the model by sequentially matching a subset of highly visible
points that cover the space. The priority of points changed with more matches using a heuristic based
on the visibility of matched points. We take a similar approach but restrict points and prioritize them
using the underlying visibility probability structure among points.

2.3.3 2D-3D Matching (Sattler et al.)

Sattler et al. used a 2D-3D point matching method guided by visual words [64]. 3D points are
represented by the mean of SIFT vector of all the track points and then quantized to a visual word.
Therefore, we get a mapping from each 3D point to a visual word. They arranged the 3D points as
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lists that quantized to the same visual word. Features in the query image were matched to these lists
using linear search to get a large number of highly noisy matches. They used RANSAC to overcome
the highly noisy nature. This produced good results even with noisy matches. We adapt this method to
find a seed point and use a probability-guided matching that identifies inliers early with a lot less effort.
Figure 2.2 illustrates Sattler et al.’s framework of direct 2D-to-3D matching.

Figure 2.2: Illustration of Sattler et al.’s direct 2D-to-3D matching framework (from Sattler et al. [64])

2.4 Feature Triangulation

Feature triangulation is one of the important problems in photogrammetry. Triangulation is the
problem of finding a point in space given its position in two camera images taken with known calibration
and pose. Generally triangulation is done using a sub-optimal method which is later minimized using
global optimization techniques like bundle adjustment. Optimal solution for the case of two views in
shown in [28]. It assumes a Gaussian noise model and triangulates new points using least squares
minimization. For three views, the optimal solution is shown by Stewenius et al. [79]. Another method
in the case of calibrated cameras is to find the mid-point in 3D space of the rays back- projected from
the image points [28]. However this method doesn’t work for projective reconstruction. Minimizing
L2 error as in the case of non-linear least squares minimization can result in local minima and requires
good initiailization to obtain global minimum. Finding globally optimal triangulation using L∞ based
formulation is also explored in [35]. Using L∞ optimization comes down to minimizing a cost function
with a single minima on a convex domain as compared to L2 based optimization which can have multiple
minimas. Figure 2.3 shows the minimas for a three view triangulation problem. The problem with L∞

based formulation is that it is not robust to outliers and can not scale to large problems. Since most of
these methods rely on accurate camera pose estimation to give good triangulation, bundle adjustment
is used which also takes into account the correction of projection matrices by minimizing the sum of
squared distances between the measured image points and the reprojected 3D points.

Goesele et al. applied a multiview stereo approach using the images and cameras of community
photo collections reconstructed using SfM [27]. They selected nearby images to produces depth maps,
which were merged to produce a model. Furukawa et al. decomposed the photo collections into clusters
and processed them independently using a patch-based stereo approach before merging the results [24].
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Reconstruction using calibrated, uniformly distributed views [26] and using street-view datasets [58, 48]
have been reported. Fuhrmann et al. [22] fused depth maps at different resolutions using scale cues to
produce adaptive meshes.

Repetitive structures cause problems in the SfM matching pipeline. Roberts et al. [61] recovered
structure in the presence of large duplicate structures by removing erroneous matches. They used an
expectation maximization based algorithm over camera poses and correctness of the matches.

Figure 2.3: (From Left to Right) Contour plot of the L2 and L∞ error for a three view triangulation
problem. L2 cost function has three local minimas where as L∞ cost function has a single minima
(Image Courtesy: Fredrik Kahl and Richard Hartley [35])

2.5 Practical Time SfM Computation

Computational efficiency is one of the primary issues in the large scale reconstruction process with
correspondence estimation and non-linear minimization using bundle adjustment being one of the major
bottlenecks. In this thesis, we also focus on making the process of bundle adjustment more efficient
using CPUs and GPUs. We discuss the related work of bundle adjustment here.

Bundle Adjustment (BA) was originally conceived in photogrammetry [45], and has been adapted
for large scale reconstructions. It is the problem of refining a visual reconstruction to produce jointly
optimal structure and viewing parameter estimates. The names refers to the ’bundle’ of light rays leav-
ing each 3D feature and converging on each camear centCalibration can be tougher which are adjusted
optimally with respect to both feature and camera positions. In general, a sparse variant of Levenberg-
Marquardt minimization algorithm [44] is the most widely used choice for BA. A public implementation
is also available [45]. Ni et al. solve the problem by dividing it into several submaps which can be opti-
mized in parallel [53]. Byröd and Äström solve the problem using preconditioned conjugate gradients,
utilizing the underlying geometric layout [11]. Agarwal et al. explore the performance of different
preconditioning strategies on large scale bundle adjustment datasets [3]. They use the block diagonal
of Hessian matrix and the block diagonal of its Schur complement as preconditioners without explicitly
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storing the schur complement in the memory. Cao et al. parallelize the dense LM algorithm, but their
method is not suited for sparse data [12]. They don’t use the GPUs for the BA step. No prior work
has been reported that parallelizes BA or the LM algorithm. We provide a hybrid implementation of
sparse bundle adjustment with CPU and GPU working together to achieve a speedup of 30-40 times on
an Nvidia Tesla C2050 GPU on a dataset of about 500 images.

2.6 Computer Vision on GPUs

The rapid increase in the performance has made the graphics processor unig (GPU) a viable candidate
for many compute intensive tasks. the match of the data-parallel computations to many operations on
images has made GPUs an ideal choice to port many computer vision algorithms. Recent advances such
as CUDA and the OpenCL standard have the potential to accelerate the use of GPUs in many areas for
more general purpose computing, including Computer vision GPUs are being used for many computer
vision applications [23], such as Graph Cuts [83], tracking [73] and large scale 3D reconstruction [19].

Vineet and Narayanan proposed an implementation of Graph Cuts on GPU by efficiently parallelizing
the push-label algorithm and performed 10-12 times faster than the best sequential algorithm reported
[83]. Sinha et al. presented a real time GPU based KLT tracker that is able to track about a thousand
features in real time. They also proposed a GPU based implementation of SIFT feature extraction
algorithm which was 10 times faster than the corresponding state of art on CPU [73]. Frahm et al. used
GPUs to efficiently perform apperance based clustering of GIST features corresponding to 3 million
images. This lead to an increase in scalibility of the large scale reconstruction systems [19]. Recently,
Wasif and Narayanan presented an implementation of K-Means clustering algorithm on multiple GPUs.
They were able to cluster up to 6 million 128 dimensional vectors and achieved a speed up of 170
compared to the CPU implementation [50]. Wasif and Narayanan also demonstrated its application in a
video organizing system, where they’re able to organize a set of 100 sport videos in about 9.5 minutes
[49].

2.7 Summary of our Contributions

In the following chapters, we present our contributions in the area of image localization, feature
triangulation and bundle adjustment. We propose a visibility probability framework using the cameras
and points available in the SfM data to effectively guide point and camera search in the case of image
localization and feature triangulation respectively. We encode the visibility information between and
among points and cameras as visibility probabilities. The conditional visibility probability of a set of
points on a point (or a set of camreas on a camera) is used to select points (or cameras) based on their
dependence or independence. The probability framework aids in estimating the priority of points and
cameras based on their dependence on each other, distances, etc.
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Our image localization algorithm guided using visibility probability uses fewer 2D-3D correspon-
dence to estimate the camera pose. We get high percentage of RANSAC inliers and we register more
number of images as compared to the other recent algorithms [64, 42]. Li et al. [42] explore the model
by sequentially matching a subset of highly visible points that cover the space. The priority of points
changed with more matches using a heuristic based on the visibility of matched points. We take a sim-
ilar approach but restrict points and prioritize them using the underlying visibility probability structure
among points. Sattler et al. [64] used 2D-3D matching and produced good results even with noisy
matches. We adapt this method to find a seed point and use a probability-guided matching that identifies
inliers early with a lot less effort.

We also introduce the problem of feature triangulation as the estimation of 3D coordinate of a given
2D feature using the SfM data. Recent approach by Agarwal et al. uses bag of visual words based
technique to find nearby images to match [4]. Frahm et al. performs clustering based on GIST features to
perform image matching [19]. Tracks of matching feature points are then triangulated. In contrast with
these approaches, we use visibility probability to guide the search in camera space and finds cameras in
which the query feature is visible. Our method is also similar to the work by Goesele et al.. Goesele et
al. applied a multiview stereo approach using the images and cameras of community photo collections
reconstructed using SfM [27]. They find nearby views using local view and global view selection based
on some heuristics. On the other hand, we propose a visibility probability based formulation to guide
our search. Our feature triangulation method increases the point density at typical locations by 30-50%.
It is especially good at identifying points in regions with repetitive appearance, where the 2D-2D match
of SfM performs poorly.

In the last part of this thesis, we discuss a practical time implementation of bundle adjustment by
exploiting the computing resources of the CPU and the GPU. The executions of the CPU and GPU are
fully overlapped in our implementation, with no idle time on the GPU. We achieve a speedup of 30-40
times on an Nvidia Tesla C2050 GPU on a dataset of about 500 images.
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Chapter 3

Visibility Probability and Joint Visibility Probability

We propose a visibility probability framework using the cameras and points available in the SfM data
to effectively guide point and camera search in the case of image localization and feature triangulation
respectively. The SfM dataset consists of m cameras, n points, and the visibility of each point’s track
in the cameras. This can be represented as a bipartite, visibility graph [42] as shown in Figure 3.1.
Here each node represents either a camera or a 3D point. An edge between the nodes is formed when
a camera sees a 3D point or a point is projected onto a camera. A typical SfM dataset consists of a
few thousands of images and few million 3D points. It represents a rich sampling of the geometry and
appearance.

We encode the visibility information between and among points and cameras as visibility probabil-
ities. Points and cameras act as the random variables in these probabilities. The conditional visibility
probability of a set of points on a point (or a set of camreas on a camera) is used to select points (or
cameras) based on their dependence or independence. The probability framework aids in estimating the
priority of points and cameras based on their dependence on each other, distances, etc. Now we define
the visibility probabilities using the points and the camera informations.

Figure 3.1: Bipartite graph of points and cameras. Visibility probability is approximated by fractions of
cameras that see single point/camera or a pair of them.
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3.1 Visiblity Probability

Visibility probability of a point with respect to a number of images can be interpreted as the prob-
ability that it is visible in a random query image. Similarly the visibility probability of a camera w.r.t.
a set of points can be interpreted as the probability that a camera sees a random point. It is high for
popular cameras and points. In the following sections, we define the visibility probabilities of a point
and a camera in detail.

3.1.1 Visibility Probability of a Point

We define the visibility probability of a point Xi as the probability that a given point Xi is visible in
a randomly selected view. We approximate it with respect to the SfM dataset as the fraction of cameras
in which the point is visible as

p(Xi) =
number of cams that see Xi

total number of cameras
=

d(Xi)

m
, (3.1)

where d(Xi) is the degree of Xi in the graph. This approaches the true visibility probability when
camera positions are dense. Visibility probability of a point is high if it seen by large number of cameras
which is true in the case of 3D points at popular locations. Therefore, given no information about the
query image it is likely to be captured at a popular place. From a tourist’s point of view, if a lot of
tourists captured images of a location, it is higly probable that the new user will also take a picture of
that location. In this way, visibility probability of a point with respect to a CPC takes into account the
user statistics of the popularity of a location.

3.1.2 Visibility Probability of a Camera

Similarly we define the visibility probability of a camera Ci as the probability that a random point
is visible in the given camera Ci. We approximate it with respect to the SfM dataset as the fraction of
points visible in the camera as

p(Ci) =
number of points seen in Ci

total number of points
=

d(Ci)

n
, (3.2)

where d(Ci) is the degree of Ci in the graph. This approaches the true visibility probability when point
positions are dense. Visibility probability of a camera is high if a lage number of 3D points project
to that camera. It implies that the visibility probability of a popular camera is more than a unpopular
camera. Therefore, given no information about a query point it is likely to be captured by a popular
camera which sees relatively higher number of points. From a tourist’s point of view, if a tourist took
an image of a very wide area or a popular location which contains a lot of reconstructed 3D points, it is
highly probable that a new query 3D point is also visible in that image. In this way, visibility probability
of a camera takes into account the popularity of an image.
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3.2 Joint Visibility Probability

We define joint visibility probabilities to establish point-point and camera-camera relationships and
propogate information from one node to another. We use joint visibility probability to guide point search
in the case of image localization and to guide camera search in the case of feature triangulation.

3.2.1 Point-Point Relationship

The joint visibility probability p(Xi, Xj) of two points is defined as the fraction of cameras in which
both are visible (Figure 3.1). It can be formulated as,

p(Xi, Xj) =
number of cameras that see Xi and Xj

m
(3.3)

Joint visibility probability of two points is high if it is jointly visible in a large number of cameras and
is low if two points are jointly visible in relatively less number of cameras. It measures the mutual
dependence of the two points on each other. The joint visibility probability is zero for a pair of points if
there exists no camera that sees both points. During image localization, we consider only those points
which have non-zero joint visibility probability with the already matched points.

3.2.2 Camera-Camera Relationship

The joint visibility probability p(Ci, Cj) of a cameras Ci, Cj with respect to a SfM dataset as fraction
of points visible in Ci and Cj respectively.

p(Ci, Cj) =
number of points that is seen in Ci and Cj

n
(3.4)

Joint visibility probability of two cameras is high if a large number of points is jointly visible in
both of them and is low if a less number of points is jointly visible in both of them. It measures the
mutual dependence of the two cameras on each other. The joint visibility probability is zero for a pair
of cameras if there exists no point that is seen in both of the cameras. During feature triangulation, we
consider only those cameras which have non-zero joint visibility probability with the already matched
cameras.
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3.3 Conditional Probability and Dependence

We use conditional probability over the joint visibility probability and visibility probabilities to prop-
agate information from one node to another. It is used to find the probability of node A given node B

has matched. Conditional probability is used to guide the search during image localization and feature
triangulation. Conditional probability of A given B is defined as the ratio of joint visibility probability
of A and B and the visibility probability of B.

3.3.1 Conditional Probability of a Point w.r.t. a set of Points

The conditional probability of a point Xi on Xj is the fraction d(Xi) of cameras that see Xi, in
which point Xj is visible. In terms of visibility probabilities, conditional probability of a point Xi on
Xj is defined as the ratio of joint visibility probability of Xi and Xj and the visibility probability of Xi.

p(Xj |Xi) =
p(Xj , Xi)

p(Xi)
=

number of cameras that see Xi and Xj

number of cameras that see Xi
. (3.5)

Equation 3.5 gives the probability of Xj being visible given that Xi is, i.e., the dependence of Xj on
Xi. The dependence will be high on nearby points but could be lower if occluded in some views. The
conditional probability of a point Xi on Xj is one if all the cameras that see Xi also see Xj . The points
Xi and Xj are mutually independent if none of the cameras see both Xi and Xj .

How does the visibility of a set S of points influence the visibility of Xj? A point is independent of
a set of other points only if it is independent of each point in the set. This leads to the expression

p(Xj |S) = 1−
∏
xi∈S

[1− p(Xj |xi)] . (3.6)

Here p(Xj |S) measures the dependence of one point Xj with respect to the set of points S. Similarly,
1 − p(Xj |S) is used to measure the independence of a point Xj with respect to the set of points S.
p(Xj |S) is zero if the point Xj is mutually independent of all the points in S. p(Xj |S) is one if the
points Xj is completely dependent (p(Xj |Xi) = 1) on atleast one point in S. The dependence (or
independence) between selected points and new points can guide the search for visible points in the
given camera to the most promising regions in camera localization.

3.3.2 Conditional Probability of a Camera w.r.t. a set of Camera

The conditional probability of a camera Ci on Cj is the fraction d(Ci) of points that is seen in Ci,
which is also visible in Cj . In terms of visibility probabilities, conditional probability of a camera Ci

on Cj is defined as the ratio of joint visibility probability of Ci and Cj and the visibility probability of
Ci. The conditional visibility probability of cameras Ci on Cj then becomes

p(Cj |Ci) =
p(Cj , Ci)

p(Ci)
=

number of points common between Ci, Cj

number of points seen in Ci
. (3.7)
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Equation 3.5 gives the probability that a point is visible in Cj , given that it is visible in Ci as well, i.e.,
the dependence of Cj on Ci. The conditional probability of a camera Ci on Cj is one if all the points
that is seen in Ci also see Cj . The cameras Ci and Cj are mutually independent if none of the points is
seen in both Ci and Cj . p(Cj |Ci) gives the dependence between the cameras, namely, the probability
that Cj also sees a point given that Ci sees it.

A camera is independent of a set of other cameras only if it is independent of each camera in the set.
The dependence of a camera Cj on a set S of selected cameras can be defined as

p(Cj |S) = 1−
∏
Ci∈S

[1− p(Cj |Ci)] . (3.8)

Here p(Cj |S) measures the dependence of one camera Cj with respect to the set of cameras S.
Similarly, 1 − p(Cj |S) is used to measure the independence of a camera Cj with respect to the set of
cameras S. p(Cj |S) is zero if the point Cj is mutually independent of all the cameras in S. p(Cj |S)
is one if the cameras Cj is completely dependent (p(Cj |Ci) = 1) on atleast one camera in S. The
dependence or independence between previously identified cameras and new ones can guide the search
for cameras that see a point.

The probability structure between and among points and cameras can be used to predict which points
are likely to be visible in a camera given a few other visible points and which camera see a point given
a few other cameras that see it. This helps to efficiently search for points visible in images or cameras
that see features.
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Chapter 4

Image Localization

Given a query image, localization algorithms answers the question “Where am I?”. It is an important
problem in the computer vision and robotics. Image localization can either be done using higher se-
mantic level algorithms or using data-driven image retrieval based algorithms . In the case of semantic
location recognition, we can use scene/category recogntion algorithms to match an image to a relevant
category like whether an image is taken inside a room or a lab or in a field etc. Scene/Category recog-
nition is done on a semantic level using high level features. However in the case of SfM (structure from
motion) or SLAM (simultaneous localization and mapping), where we have many images taken at a
location, image localization is used to estimate the exact location the image was captured from relative
to the already localized images or to the map or 3D model built using those images. Here we solve the
problem of localizing an image relative to the model reconstructed using structure from motion. Figure
4.1 depicts the localization question that we solve in this thesis. Image localization aims to compute
the camera parameters of a given query image by matching a number of SfM points in them. Image

Figure 4.1: The Image Localization Problem: Where am I?
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localization can be done using these two major steps:

• Feature Matching: The 2D features in an image are matched to 3D points in a model to estimate
the absolute orientation with respect to the model.

• Camera Pose Estimation: Given the correspondences, direct linear transform (DLT) is used to
estimate the camera projection matrix [29].

Our image localization algorithm is guided by the conditional visibility probabilities among points
(Eq. 3.6). The proposed localization algorithm can be divided into three basic parts:

• Seed generation: Seed generation attempts to find a seed point to initiate the matching process.

• Probability-guided point matching: Point matching quickly identifies 3D points that match the
query image using the visibility probability to guide the search.

• Camera estimation: In this phase, we recover the camera parameters from the matches obtained.
Direct linear transform (DLT) is used within a RANSAC loop to estimate the paramters robustly.

In the following section, we explain the architecture of the complete localization system.

4.1 Architecture of our Localization System

In this section we explain different components used in the localization system. Figure 4.2 shows
the architecture of our localization system. The whole architecture is divided into two major sections:

1. Pre-computation, which includes the precomputed datastructures which help in our matching
framework

2. Query image localization, which includes online components which are processed when we are
given the query image.

We now explain each one of these sections in detail.

4.1.1 Offline Processing

The pre-processing step consists of pre-computing the model and other data-structures which helps
in fast query localization. The major pre-computations involved are:

• Model Compression: A typical SfM dataset contains a large number of 3D points and cameras.
So, we compress the model to reasonable number of 3D points and cameras and ensuring the
coverage of model.
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• Mean SIFT Point Cloud: In order to estimate 3D-2D correspondences, both the 3D points and 2D
features have to represented in the common SIFT space. To ensure that, point is represented as
the mean SIFT of all the track point SIFT features

• Pair-wise probabilities matrix: The joint visibility probability of all pairs of points is pre-computed
and stored as a sparse matrix.

• Visual word based word to point list: The mean SIFTs corresponding to each 3D point is quantized
to a visual word to estimate a mapping from each word to a set of 3D points.

Figure 4.2 (Right) represents the flow of various pre-computations done as a part of the localization
system. We now explain each one of these in detail.

Figure 4.2: Flowchart showing the dependency of various components on each other. Filled boxes
represent the pre-computed datastructures.

4.1.1.1 Model Compression

SfM datasets contain large numbers of points, all of which may not be informative. We use the
method by Li et al. to compress the number of points using the K-Cover algorithm to include the most
valuable points [42]. We use 3% to 5% of the original number of points in our experiments.
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K-Cover compresses the model and ensures that each camera sees atleast K points. Optimal K-Cover
is NP-Hard. An approximate version of K-Cover uses a greedy algorithm that always selects a point
which covers the maximum number of not yet covered images. So, in each iteration we selec points
until all images are covered atleast once and this iteration is run K times to cover all the images atleast
K times. In case some of the images has less than K points visible, we remove that image from the
iteration after it has no more point left. This sort of compression ensures the complete model is covered
uniformly and not only in popular regions. We can have points in the sparser region as well. Figure
4.3 shows the reconstructed point cloud model of the Dubrovnik city built using community photo
collection. In the left, we have the full model and in the right, we have the compressed model processed
using the K-Cover algorithm. We can see that the left model has more number of points than the right
one.

Figure 4.3: Reconstructed 3D point cloud for Dubrovnik city. Left: full model. Right: compressed
model using K-Cover. The bright red regions represent the distribution of reconstructed camera posi-
tions. (Image Courtesy: Li et al.[42])

4.1.1.2 Mean SIFT Point Cloud Model

The SfM dataset consists of a large number of points and cameras and their mappings onto each
other. Each 3D point is seen by a set of cameras along with the corresponding 2D SIFT feature in each
of the camera. The set of 2D feature points corresponding to a 3D point is called its track. Similarly,
each image sees a set of 3D points which maps to the corresponding 2D feature points. We represent
each point as the mean SIFT of all SIFT features of its track. The 3D point and the 2D mean SIFT
vector represent each 3D point in the common SIFT space. This would help us estimate the 3D-2D cor-
respondences using the SIFT feature vectors. The mean SIFT is only computed for those points which
are the part of compressed cover model. Since mean SIFT computation of each point is independent of
other points, it can be easily parallelizable. We distribute this computation over 20 compute cores.
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4.1.1.3 Pair-wise Probabilities Matrix

The visibility probabilities between all pairs of these points are precomputed as an n×n matrix with
the entry (i, j) storing the number of cameras that see points i and j. We store this highly sparse matrix
in a compressed row format. In this matrix, we store the number of cameras in common that see any
two points. That is, the entry A[i, j] contains the number of cameras that see both Xi and Xj . For each
point, we find all the points that share atleast a camera in common with it and store the point ids as well
as the number of cameras in common. Here also the computation of each point is independent of other
points, so it is also distributed over 20 compute cores.

4.1.1.4 Visual word based Word to Point list

Given the SfM dataset, we pre-compute the visual-word based sorted list mapping each word to a
set of 3D points [64]. This list is used in the process of seed generation. Each 3D point is represented
using the mean SIFT of its track points. The mean SIFT corresponding to a 3D point is quantized to the
nearest visual word using a prebuilt vocabulary tree. FLANN library is used to find the nearest neighbor
visual word corresponding to the mean SIFT. We get a mapping from each of the mean SIFTs to a visual
word. Therefore, we have a mapping from each of the 3D point to a visual word. Using these mappings,
we find a list of all the 3D points corresponding to a visual word.

4.1.2 Query Image Localization

Given all the precomputed datastructures, we compute the camera pose of a given query image using
visibility probability guided matching. Given the query image, SIFT is used to compute its feature
descriptors. Each feature descriptor is then quantized to nearest word using the vocabulary tree. Seed
point is estimated as explained in the seed generation process. The SIFT vectors of the query image
are stored in a Kd-Tree and all the nearest neighbor queries for matching 3D-2D point are done using
FLANN library[51]. Given sufficient matches we use DLT inside a RANSAC loop to estimate the
camera pose.

The proposed localization algorithm can be divided into three basic parts:

• Seed generation: Seed generation attempts to find a seed point to initiate the matching process.

• Probability-guided point matching: Point matching quickly identifies 3D points that match the
query image using the visibility probability to guide the search.

• Camera estimation: In this phase, we recover the camera parameters from the matches obtained.
Direct linear transform (DLT) is used within a RANSAC loop to estimate the paramters robustly.

Figure 4.4 shows the flowchart of the complete localization pipeline. In the following sections, we
explain each of the above steps in detail.
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Figure 4.4: Flowchart of the steps involved in the image localization algorithm

4.2 Seed Generation

Localization starts with a query image I and no information about its camera location. We use SIFT
(Scale Invariant Feature Transform) to compute the feature descriptors of the query image [46]. SIFT
feature descriptors are robust to affine transformations like rotation, scale, shear and translation. SIFT
descriptors can effectively handle large variations in images which is quite common in community photo
collections. Therefore, SIFT is the preferred descriptor for the purpose of large scale 3D reconstructions.

We adapt the 2D-to-3D searching method used by Sattler et al. to identify a seed point in I [64]. The
SfM dataset consists of points and the track information about all the 2D image projections triangulating
to that 3D point. Each track point is represented using its SIFT descriptor. The 3D point is represented
using the mean SIFT features of its track. Using a standard vocabulary tree of 100K words, we quantize
each 3D point to a visual word. Points that map to the same visual word are collected into a list. In our
implementation, we pre-compute this list which maps a visual word to a set of 3D points.

SIFT features extracted from the query image are also quantized to visual words. The lists of points
for the visual words in the query image are collected. Using the mapping from each visual word to a set
of 3D points and the mapping from each SIFT feature vector in the query image to a visual word, we find
out a mapping from each SIFT feature vector in the query image to the set of mean SIFTs corresponding
to a collection of 3D points. Therefore, we get a mapping from image features to the list of points that
quantize to the same visual word. We have a count of the number of 3D points in the list corresponding
to a feature descriptor. The list of feature to 3D points mapping is arranged in decreasing order of their
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Figure 4.5: Seed Generation Process

lengths (length refers to the number of 3D points mapping to a feture descriptor). Figure 4.5 depicts this
process of list generation.

Each query image feature is searched linearly in these lists. The search starts with the longest list
to prefer more popular visual words over less popular ones. Linear search is done in the list of points
by finding the nearest and the next nearest neighbor point in the list corresponding to the image feature
in the SIFT space. Using the SIFT descriptor corresponding to a image feature, we compute distance
from the 3D points by measuring the distance of SIFT descriptor of an image feature to mean SIFT
feature descriptor of the 3D point. We iterate linearly over the set of 3D points corresponding to an
image feature and keep updating the nearest neighbor and the next nearest neighbor by computing the
distance of SIFT feature descriptor of an image feature from mean SIFT feature descriptor of a 3D point.
The computation time to find the nearest neighbor and next nearest neighbor corresponding to a image
feature in the 3D point space is O(k), where k is the size of the list. This computation is fast as the
size of the 3D points list mapping from an image feature is generally small in size. A feature matches
a point if it clears the ratio test in the list and is considered a potential seed. Ratio test based matching
is based on finding the ratio of distance of image feature descriptor from the mean SIFT of nearest
neighbor and distance of image feature descriptor from the mean SIFT of the next nearest neighbor. If
this ratio < 0.6, we declare the nearest neighbor 3D point as a potential seed. Reverse matching of a
potential seed using the ratio test in the descriptor space in I confirms it as a seed. We use the mean SIFT
of the potential seed and find its nearest and next nearest neighbor among the SIFT feature descriptors
in the image. We use FLANN library to estimate the SIFT neighbors in the image corresponding to the
mean SIFT [51]. If the ratio of distance from the mean SIFT of 3D point to the nearest neighbor SIFT
descriptor in the image and the distance from mean SIFT of 3D point to the next nearest neighbor SIFT
descriptor in the image is less than 0.6, we declare that 3D point as the seed point. The seed point is the
first 3D-2D match in I .
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Sattler et al. search from the shortest list to exploit uniqueness [64]. The descending order of search
gives us more reliable potential seeds in practice. We find that the average number of reverse matching
steps needed before finding a seed was 14 when searched in the descending order compared to 230
when search was in the ascending order. This can be because the reliability of ratio test based matching
is higher given large number of samples as compared to less number of samples. Sattler et al. did not use
reverse matching for confirmation and relied on RANSAC to remove the outliers. Our seed generation
can be described as a 2D-3D-2D matching approach. Given the seed point, we initiate probability-
guided point matching to find rest of the 3D-2D matches. In the following section, we describe this in
detail.

4.3 Probability-Guided Point Matching

Probability-guided point matching is used to guide the rest of the matching algorithm, given a seed
point. We use visibility probability to guide the point matching algorithm. Algorithm 1 outlines our
matching algorithm. It starts with a set S of points that are already matched in the query image I . Initial
S contains a singleton seed point. The process involves 3 steps:

1. Identify a candidate set G of points with promise,

2. Prioritize them based on parameters like their independence of S, distance, etc.,

3. Search in the query image based on the priority to add to S.

These steps are repeated until a minimum number of points are matched. The process restarts with
a new seed otherwise. It fails after trying a certain number of seeds. Figure 4.7 shows the results for a
few steps.

4.3.1 Identifying the Candidate Set

In the normal mode, the candidate set G is the subset of SfM points that are jointly visible to all
points in S (Step 4). We include a point Xj into G if the product

∏
Xi∈S p(Xj , Xi) is above a threshold

t0. Mathematically, G is defined as,

G = {Xj |
∏
Xi∈S

p(Xj , Xi) > t0}. (4.1)

A very small threshold t0 is used to include more points. G can be computed from the precomputed
probabilities. It confines the search to local set of points which are jointly visible to all the matched
points. The candidate set is large when S has a single point and shrinks fast as points are added to S.
The ideal condition for this technique to work perfectly is estimating the candidate set in popular regions
or densely photographed areas.
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1: Compute SIFT interest points and descriptors of the query image I
2: Find a seed point and set it as set S.

If number of seeds generated exceeds maxSeed, declare failure and exit
3: while S contains fewer than t1 points do
4: Update the candidate set G of points using joint visibility to points in S
5: If |S| < t2, set p(Xi|S)D(Xi, S) as the priority of points Xi ∈ G
6: Otherwise, set (1− p(Xi|S))D(Xi, S) as the priority.
7: Search each Xi ∈ G in priority order by finding 2 closest descriptors in I
8: If distances to the descriptors satisfy the ratio test, add Xi to S
9: If no more points in G, proceed to Step 11

10: end while
11: If |S| < t2, discard S,G and start over from Step 2
12: If |S| < t1, repeat from Step 3 in the expansion mode.

Start over from Step 2 if t1 points can’t be found.
13: Estimate camera pose using RANSAC over DLT
14: If number of inliers is less than 12, start over from Step 2
15: Declare success and return camera matrix

Algorithm 1: Localize (Image I)

In rare cases, an expansion mode is used with G as points Xj with the sum
∑

Xi∈S p(Xj , Xi) above
a threshold t0. We define it as,

G = {Xj |
∑
Xi∈S

p(Xj , Xi) > t0} (4.2)

G then contains points that are jointly visible with any point in S. This happens when G gets empty with
a few promising matches in S (Step 12). This happens in sparsely connected regions which are not so
photographed and therefore have less number of 3D points. In these cases, we try to control the rate of
expansion by selecting points which are already jointly visible with already matched points. Selecting
points which are jointly visible with very less number of already matched points can grow size of the
candidate set at an exponential rate.

4.3.2 Prioritizing the Candidate Set

The priority assigned to points in G should depend on the potential contribution to the task. Points
independent of the already matched ones can contribute more information. Since p(Xi|S) gives the
dependence of Xi on points in S, a priority of 1− p(Xi|S) will consider independent points early (Step
7). Distant matching points contribute more to the linear estimation of camera matrix than proximate
ones. Independent and distant points can be preferred with (1 − p(Xi|S))D(Xi, S) as the priority to
points Xi ∈ G in Step 5, where D() a distance measure. Therefore, we define the priority as,

Pr(Xi|S) = (1− p(Xi|S))×D(Xi, S) (4.3)
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Figure 4.6: Triangle function for a given threshold

We use a triangle function of the Euclidean distance of Xi to the closest point in S as D(Xi, S). The
function increases linearly with distance upto a certain threshold and falls steeply beyond it, emphasizing
distant points while de-emphasizing very far off ones. We use the mean distances in the SfM model to
set the threshold. Mathematically, we define distance as,

D(Xi, S) = min
Xj∈S

d(Xi, Xj) (4.4)

where d(Xi, Xj) is the euclidean distance between the 3D coordinates of Xi and Xj . Using this defini-
tion and threshold th0, the triangle function is defined as

D(Xi, S) =

D(Xi, S), if D(Xi, S) < th0.

2× th0 −D(Xi, S), if D(Xi, S) ≥ th0.
(4.5)

Figure 4.6 depicts the triangle function for a given threshold th0.
In practice, the same localization error is obtained using about half the number of matches if distance

is used for priority. As each matched point is added to S, the candidate set shrinks (Step 4) and the
priorities of points in it are updated.

Considering independent points can quickly shrink the candidate set and we can have no more points
left to search to reach the minimum number of required match threshold. In these cases, we start the
process in a safe mode. A safe mode that matches points close to S is used in the initial phase when only
a few points are in S. A priority measure of p(Xi|S)D(Xi, S) facilitates this by considering dependent
points early.

Pr(Xi|S) = p(Xi|S)×D(Xi, S) (4.6)

This continues until t2 points are matched (Step 6). We use 5 as the value for t2 in the present system. If
the matching cannot produce t2 points, the seed selection is faulty and we restart the process (Step 11).
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After the threshold t2 is reached, we use (1 − p(Xi|S))D(Xi, S) as the priority to points until t1
points are matched. Expansion mode is used if fewer than t1 matches are obtained, which happens less
than 10% of the time. In expansion mode, we populate the set G such that it contains points Xj with
the sum

∑
Xi∈S p(Xj , Xi) above a threshold t0. In this phase, priority measure of p(Xi|S)D(Xi, S) is

used until we have t1 points matched or no more point is left. We consider the dependent points to slow
down the rate of expansion. Considering independent points would increase the size of the candidate
set G at an exponential rate. A new seed is tried if these efforts cannot produce sufficient matches (Step
12).

4.3.3 Searching the Candidate Set

Points are considered in the descending order of priority for matching in I (Step 7). A point matches
if its closest two neighbors in the descriptor space satisfies the ratio test [46]. If the ratio of distance from
mean SIFT of 3D point to the nearest neighbor SIFT descriptor in the image and the distance from mean
SIFT of 3D point to the next nearest neighbor SIFT descriptor in the image is less than 0.6, we declare
that 3D point as the matching point. We proceed to a RANSAC-based camera estimation after finding
t1 matches. Since community photo collections contain large amount of noise and can lead to wrong
matches, we use RANSAC to robustly estimate the inliers. RANSAC divides the set of matches into
two categories, inliers which consists of good matches and outliers which are bad matches. Table 4.1
shows the performance as t1 is increased. The high RANSAC inlier percentage shows that our guided
matching scheme produces inliers early.

The threshold t1 controls the matching effort and the accuracy of localization. Table 4.1 shows that
generating 20 to 30 points provides a good balance between accuracy and effort. The matching methods
by Li et al. [42] and Sattler et al. [64] need to produce 100 or more potential matches before the camera
estimation step. Our method also uses far fewer nearest-neighbor queries as shown later. If RANSAC
produces fewer than 12 inliers, the seed is discarded (Step 14). If the number of seeds tried exceeds
a limit, the localization of the query image fails. Around 88% of the query images in the Duborvnik
dataset are successfully localized using the first seed. The average number of seeds tried was 1.3 for
successful query images and 5 for unsuccessful ones (Table 4.3).

4.4 Camera Estimation

We estimate the camera parameters using RANSAC (RAndom SAmple Consensus) over DLT (Direct
Linear Transform) using the 3D-2D correspondences in the matching process. RANSAC tries to remove
outliers by assuming that the inilers can be explained using a model where as outliers are independent
of each other and do not follow any model. It runs by randomly selecting 6 points to estimate camera
parameters using DLT and estimating the number of inliers that are within the error threshold of the
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Figure 4.7: Steps shown over the point cloud. Query image is the inset. From left: Seed (green) and
ground truth camera, candidate set G with priority (increasing from blue to red), matched point and new
G with priority, prioritized G after 3 matches, and after 5 matches. Please view the magnified electronic
version.

No. points in S (t1) 15 20 30 50 100
Inlier percentage 79.9 78.12 76.15 75.32 66.76
No. images regis-
tered

727 788 789 789 789

No. points
searched

523 839 1679 2893 4597

Error in localization using RANSAC
Median 0.0037 0.0023 0.0023 0.0022 0.0021
70th percentile 0.011 0.0073 0.0058 0.0063 0.006
Mean 0.1177 0.0267 0.0498 0.0261 0.0512

Error in localization without RANSAC
70th percentile 0.0231 0.0243 0.0263 0.0345 0.0425

Table 4.1: Performance for different number of point matches for Dubrovnik dataset

model. After some iteration, the model which had maximum number of inliers is considered as the
desired model and is re-evaluated using all the inliers.

Given the inliers, direct linear transform (DLT) is used to estimate the camera projection matrix [29].
Using the 3D-2D correspondences, direct linear transform projects the optimization problem as a linear
least squares problem. The projection equation is represented by x ' PX where X is a vector of 3D
points, x is the corresponding vector of 2D features and P is the estimated projection matrix mapping
3D points to the corresponding 2D features. P is estimated by solving the equation x×PX = 0

using singular value decomposition. It requires a minimum of six correspondences to estimate the
projection matrix using DLT. Our approach generates reliable matches, with over 78% of the matches
being RANSAC inliers. About 20 matches are sufficient in most cases, but an accuracy-speed tradeoff is
provided by adjusting t1 as seen in Table 4.1. RANSAC itself has only a small impact on the localization
accuracy, which is the primary strength of our approach. We use the basic p6p method for camera
estimation [29]. It requires minimum 6 points to estimate the camera pose. DLT uses singular value
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Dataset
#Cameras #Points #Query

Full Compressed Images
Dubrovnik 6044 2,208,645 75,000 800
Rome 15,179 4,312,820 100,000 1000
Vienna 1,324 1,132,745 50,000 266

Table 4.2: Details of the datasets used for the experiments

decomposition to estimate the projection matrix which is further decomposed to get translation and
rotation.

Other techniques like p4pfr and p3p do not improve the accuracy by much, but require higher compu-
tation time. p4pfr estimates camera pose using 4 points and unknown focal length and radial distortion
[33]. It solves for camera pose, focal length and radial distortion. The system of polynomial equations is
solved using Grobner basis methods. Similarly, if focal length and other intrinsic parameters are known
we can use p3p method which requires only three points to estimate camera parameters [18]. It gives 4
camera matrices of which the camera matrix which results in minimum reprojection error is chosen as
the result.

4.5 Experimental Results

We use the Dubrovnik (6044 images, 2M points), Rome (15179 images, 4M points), and Vienna
(1324 images, 1M points) datasets used by others for our experiments [42, 64]. The number of points
used for experiments were compressed to 75K, 100K and 50K points respectively. Information on
the datasets used for the experiments is given in Table 4.2. We use the same query images (800 for
Dubrovnik, 1000 for Rome and 266 for Vienna) to facilitate direct comparison.

Table 4.3 gives the matching performance of our approach. We show the number of registered images
out of all query images, mean RANSAC inlier ratio, number of images that can be registered using one
seed, average number of seeds required to register an image, average number of 3D-2D nearest neighbor
queries done, average registeration time for all the registered images. Table 4.3 also gives the statistics of
average number of seeds required to reject an image, average number of 3D-2D nearest neighbor queries
done and the average rejection time. We match more images than previous efforts and do so with lesser
effort in terms of the number of nearest neighbor queries [64, 42]. We also generate promising matches
early as seen from the RANSAC inlier ratio. On an average, we are able to match 4 images per second.
Our rejection time is also comparable to the registration time. We register 88% of the images using the
first seed itself.

Table 4.4 compares the localization accuracy of our approach with prior work on the Dubrovnik
dataset. We achieve better localization compared to Li et al. [42]. The mean error seems worse because
we match more images than them, with most of them being of low quality for matching. Sattler et al.
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Successfully registered images Rejected images
# of Inlier Ratio With 1 Mean # Mean # Reg. Mean # Mean # Rej.

Images (Mean) Seed Seeds NN queries Time Seeds NN queries Time
788 0.78 692 1.3 839.6 0.25 5.01 4199 0.51
977 0.81 755 2.74 3253 0.27 6.21 5876 0.61
219 0.74 144 2.25 972 0.40 4.23 3369 0.49

Table 4.3: Performance of our localization approach for registered and rejected images in Dubrovnik,
Rome and Vienna datasets (from top to bottom)

Method #Reg. Images Mean[m] Median[m] 1st Quartile[m] 3rd Quartile[m]
Our Method 788 34.79 3.104 0.88 11.83
Sattler et al. 784 53.9 1.4 0.4 5.9
Li et al. 753 18.3 9.3 7.5 13.4

Table 4.4: Comparison of our localization accuracy with previous work

[64] perform better on median error, but has very high mean error due to several images localized very
badly. This is true even though they register fewer images.

To study the rejection performance of the approach, images from Rome dataset were searched in
Dubrovnik and Vienna datasets and images from Dubrovnik in Rome. Table 4.5 shows the results.
The candidate set gets exhausted fast and the search terminates quickly in our approach. Rejection
involves trying more nearest-neighbor queries than successful registration. Images were rejected using
2-4 seed points and took on an average 0.4, 0.54 and 0.22 seconds respectively. Our rejection times are
only slightly more than registration times. This is in contrast to rejection being typically an order of
magnitude slower for the previous methods [42, 64]. Rejecting images from other datasets is slightly
faster than rejecting images from the same dataset. This is because images from other datasets require
less number of nearest neighbor queries than the number of nearest neighbor queries required to reject
images from the same dataset. For example, in order to reject images from the other dataset when
localized to the Dubrovnik dataset requires 3451 NN queries on an average whereas to reject images
from the same dataset when localized to the Dubrovnik dataset requires 4199 NN queries on an average.

Our localizing performance is compared with methods by Li et al. [42] and Sattler et al. [64] in
Table 4.6. We show the statistics of the number of images registered, the number of 3D points searched
and the registeration time for three datasets of Dubrovnik, Rome and Vienna and compared it with the
corresponding numbers by Li et al. [42] and Sattler et al. [64].

Dataset #Query Images #Rej. Images #Seeds #NN Queries Rej. Time[s]
Dubrovnik 1000 1000 2.8 3451 0.4
Rome 800 800 2.70 5026 0.54
Vienna 1000 1000 3.44 2810 0.22

Table 4.5: Performance on negative examples from other datasets
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Figure 4.8: Six registered (left) and four rejected (right) new images of Dubrovnik

Li et al. use a prioritized selection of points for matching [42]. They use a small set of very high
priority points to increase the chance of matching instead of a separate seed generation step. They update
the priorities of jointly visible points when a new point is matched by a factor inversely proportional to
its degree. Our probability structure allows better pruning, prioritizing and reordering of the remaining
points than the above heuristic. Our method successfully registers more images in each data set while
searching far fewer points. We search 10-20% points of what was done by Li et al (Table 4.6). and get
better localization accuracy (Table 4.4) as a result.

Sattler et al. [64] extend the 2D-3D matching until a large number of matches are found, with static
priorities for points. While they perform well on images that localized well, they performs much more
work on rejection. Our rejection and registration times are comparable (Table 4.5). The visibility
probability is thus successful in guiding the search to the successful points and in rejecting matches.

The performance of localizing new images of the same space is given in Table 4.7. We collected
general images from Flickr using relevant keywords for Dubrovnik, Rome, and Vienna. These images
were taken in 2011 or later. They registered quickly and produced low reprojection errors. Six registered
and four rejected images of Dubrovnik are shown in Figure 4.8.

We compared the performance of various prioritization techniques in the localization process. Table
4.8, 4.9 and 4.10 show the results on Dubrovnik, Rome and Vienna datasets. The prioritization measures
used in comparison were Dependence Measure (p(X|S)), Independence Measure ((1− p(X|S))), Dis-
tance weighted Dependence Measure (p(X|S)D(X|S)) and Distance weighted Independence Measure
((1 − p(X|S))D(X|S)) and the combined method as described in Section 4.2. Table 4.11 shows the
results on monument scale datasets of Colosseum, Pantheon and St. Peters Basilica.

Method Dubrovnik Rome Vienna
#reg.
im-
ages

#pts
searched

reg.
time[s]

#reg.
im-
ages

#pts
searched

reg.
time[s]

#reg.
im-
ages

#pts
searched

reg.
time[s]

Our 789 839.6 0.25 977 3253 0.27 219 972 0.40
[42] 784 - 0.28 975 - 0.25 207 - 0.46
[64] 753 9756 0.73 921 12963 0.91 204 6245 0.55

Table 4.6: Performance comparison with earlier methods on 3 datasets
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Dataset #Query
Images

#Reg.
Images

#Seeds #NN Queries RANSAC
Inlier
Ratio

Reproj.
Error

Reg. Time[s]

Dubrovnik 70 64 2.81 950 0.80 1.25 0.21
Rome 44 40 3.1 3834 0.78 1.7 0.3
Vienna 40 27 2.59 2381 0.81 0.5 0.36

Table 4.7: Registration and rejection performance on new images

Formulation

Successfully registered images Rejected images
# Inlier With Mean Mean Loc. Reg. Mean Mean Rej.
of Ratio 1 # # NN Acc # # NN

Images (Mean) Seed Seeds queries (Mean) Time Seeds queries Time
Dependence
Measure

787 0.77 660 1.44 822 91.6 0.23 5 4305.5 0.40

Independence
Measure

790 0.73 615 1.78 1181.1 47.10 0.24 4.2 3185.9 0.29

Distance
weighted
Dependence
Measure

787 0.766 659 1.45 938 82.06 0.27 5 4327.9 0.45

Distance
weighted In-
dependence
Measure

786 0.729 621 1.76 1323 42.32 0.254 4.14 3858.6 0.42

Combined
Method
(Section 4.2)

788 0.78 692 1.3 839.6 34.79 0.25 5.01 4199 0.51

Table 4.8: Performance of various probability formulations on images in Dubrovnik Dataset

4.6 Conclusions

In this chapter, we propose an image localization system which uses the visibility probability frame-
work to guide correspondence search. It uses a few 3D points to 2D feature mappings in the query image
to estimate its camera. We use the conditional visibility probability among points to effectively guide
these searches. Our probability-guided exploration generates RANSAC inliers in high proportions as
matching proceeds. Our localization method successfully registers as many or more new images as the
prior work. We reduce the number of nearest neighbor searches to 10-20% of what was done by Li et al
[42]. Due to the improved accuracy, we only need to generate 25% of matches as Sattler et al [64].
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Formulation

Successfully registered images Rejected images
# Inlier With Mean Mean Reg. Mean Mean Rej.
of Ratio 1 # # NN # # NN

Images (Mean) Seed Seeds queries Time Seeds queries Time
Dependence
Measure

968 0.78 618 2.54 3707.01 0.40 5.43 9700 0.75

Independence
Measure

972 0.75 559 2.85 3606.5 0.34 3.71 8436.6 0.7

Distance
weighted Depen-
dence Measure

974 0.76 617 2.55 3685.5 0.35 4.5 5.61 0.71

Distance
weighted In-
dependence
Measure

976 0.78 539 2.94 3647 0.31 3.7 7475 0.65

Combined
Method (Section
4.2)

977 0.81 755 2.74 3253 0.27 6.21 5876 0.61

Table 4.9: Performance of various probability formulations on images in Rome Dataset

Formulation

Successfully registered images Rejected images
# Inlier With Mean Mean Reg. Mean Mean Rej.
of Ratio 1 # # NN # # NN

Images (Mean) Seed Seeds queries Time Seeds queries Time
Dependence
Measure

216 0.760 142 2.34 1892.5 0.422 4.08 3325 0.455

Independence
Measure

225 0.74 135 2.75 2223.33 0.426 4.12 3050.9 0.436

Distance
weighted Depen-
dence Measure

218 0.754 144 2.22 1424.7 0.429 4.14 3324.5 0.464

Distance
weighted In-
dependence
Measure

218 0.75 144 2.22 1917.7 0.424 4.14 3324.5 0.45

Combined
Method (Section
4.2)

219 0.74 144 2.25 972 0.40 4.23 3369 0.49

Table 4.10: Performance of various probability formulations on images in Vienna Dataset
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Dataset #Query
Images

#Reg.
Images

#Seeds
(mean)

#NN
Queries
(mean)

Inlier
Ratio

Reproj.
Error

Reg.
Time[s]

Colosseum
(1167 Cam-
eras, 483621
Pts)

180 176 1.36 362.6 0.87 0.92 0.183

Pantheon
(1809 Cam-
eras, 301397
Pts)

200 199 1.15 393 0.848 1.17 0.2

St. Peters
Basilica
(1180 Cam-
eras, 318362
Pts)

200 182 1.07 444.9 0.87 0.81 0.23

Table 4.11: Registration and rejection performance on Colosseum, Pantheon and St. Peters Basilica
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Chapter 5

Feature Triangulation

We define the problem of feature triangulation as follows: Given a feature-point in an image with
2D coordinates and the descriptor, find its 3D coordinates. Triangulation is an important problem in
computer vision. In the context of SfM duality, it is a dual problem of image localization, with the roles
of cameras and points reversed. Each camera sees multiple points and each point is seen by multiple
cameras in a SfM dataset. Each image that is localized is matched to many 3D points and similarly, each
feature that is triangulated has to be matched to many other features. Similar to image localization, an
image feature which has to be triangulated is matched to nearby images.

Triangulating a 2D feature to a 3D point requires a track of features that matches to the query 2D
feature and the corresponding camera poses. Given a track of 2D features and the corresponding camera
poses, a 3D point is estimated such that it minimizes the reprojection error. Generally, a 3D point is
estimated using a simple method which is later optimized using a global optimization technique like
bundle adjustment. By assuming that the feature is taken from the space of the SfM dataset, we can
match it in two or more cameras. Triangulation can give the point coordinates after matching in cameras
(whose calibration matrices are known). Overall the feature triangulation algorithm can be divided into
two basic steps:

• Feature Matching: Given a query 2D feature, we have to search the nearby cameras to find the
matching 2D features. As a result, a track of matching features is estimated in this step.

• Point Estimation: Given a track of 2D features and the corresponding camera poses, a 3D point
is estimated such that it minimizes the reprojection error when projected back onto the respective
cameras.

However, there usually are at least two orders of magnitude more features than there are images.
Hence, it will be more useful to triangulate a number of features found in a given image. We address
the problem of triangulating features that are found in an image of the SfM dataset.

Given a 2D feature, our algorithm searches the space of cameras for visibility of the query feature
guided using visibility information. We use the conditional visibility probability among cameras to
effectively guide these searches. Our scheme can match 4 new images per second on a high end work-
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station. Our feature triangulation method increases the point density at typical locations by 30-50%. It
is especially good at identifying points in regions with repetitive appearance, where the 2D-2D match
of SfM performs poorly. Our feature triangulation algorithm is also the dual of the localization process
described in the previous chapter. It has five steps:

• Feature-Point selection: This step is used to find novel feature-points for triangulation. This
ensures that we do not resonstruct an already triangulated feature and add novel 3D points to the
triangulation.

• Probability-Guided Camera Selection: Our algorithm searches the space of cameras for visibility
of the query feature guided using visibility information. We use the conditional visibility proba-
bility among cameras to effectively guide these searches.

• Local-View Selection Prior: We incorporate the local information around the query feature and
use this prior to boost the performance of probability-guided camera selection

• Two-way matching: This matching technique uses two-way epipolar constraint on the SIFT near-
est neighbors of a feature point to confirm a match. This can also work in the case of repetitive
structures.

• Point Estimation: Given the track of matching features, we estimate the 3D coordinates using
singular value decomposition to solve the equation x×PX = 0. It is done inside a RANSAC
loop to make it more robust

We now explain each one of these in detail.

5.1 Feature-Point Selection

Given an already registered image, we use feature-point selection to select novel feature-points which
are matched to nearby images and reconstruct new 3D points. This step identifies the 2D feature-points
in an image to be triangulated. We use a camera-image C0 from the SfM dataset as the image from
which features are selected. We detect interest points in the specified image and describe them using
SIFT vectors. We restrict the features to lie sufficiently far from the image borders. Alternately, the user
can interactively draw a rectangle to restrict the features inside it. We also discard interest points that
are within 4 pixels of an existing point present in the image. This is done by finding all the features
which are already reconstructed and has a 2D-3D correspondence. These reconstructed points are a
part of SfM output and reconstructing them again won’t add novel 3D points. So, we set a threshold of
4 pixels on the euclidean distance from the already reconstructed feature points. This ensures we use
novel features-points for triangulation. A camera and a 2D feature-point in it are sent to the triangulation
process.
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1: Initialize S as the camera C0

2: while S contains fewer than q1 cameras do
3: Update the candidate set G of cameras using visibility to cameras in S
4: Assign (1− p(Ci|S))D(Ci, S)α(Ci, S) as the priority to cameras Ci ∈ G
5: Examine camera Ci ∈ G in priority order. Match F in it.
6: If Ci satisfies two-way matching, add it to S
7: If no more cameras in G, proceed to Step 9
8: end while
9: if |S| ≥ 2 then

10: Triangulate camera projections to estimate a 3d point
11: else
12: Declare Failure
13: end if

Algorithm 2: Feature Triangulation (Camera C0, Feature F )

Figure 5.1: Steps shown over the point cloud with chosen camera and query feature as inset. From left:
First camera, candidate set G (blue), next matched camera and new G, prioritized G after 3 matches,
and after 4 matches. Please view in the electronic version.

5.2 Probability-Guided Camera Selection

Our algorithm searches the space of cameras for visibility of the query feature guided using visibility
information. Algorithm 2 outlines our camera selection process. It uses the set S of selected cameras
in which the query feature F is matched. S starts with camera C0 in which feature F is present. The
process involves 3 steps:

1. Identify a candidate set G of cameras with promise,

2. Prioritize them based on parameters like their independence of S, distance, etc.,

3. Search in the cameras for the query feature-point F based on the priority to add to S.

These steps are repeated until a minimum number of feature-points are matched. Triangulation fails
if F matches in less than 2 cameras.
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5.2.1 Identifying the Candidate Set

Cameras that are jointly visible to every camera in S are selected as the candidate set G (Step 3). We
include cameras Cj for which

∏
Ci∈S p(Cj , Ci) is greater than a threshold in G. Mathematically, we

define G as,

G = {Cj |
∏
Ci∈S

p(Cj , Ci) > t0} (5.1)

G can be computed from the precomputed probabilities. It confines the search to local set of cameras
which are jointly visible to all the matched cameras. The candidate set is large when S has a single cam-
era and shrinks with each camera added to S. The ideal condition for this technique to work perfectly
is estimating the candidate set in areas having high density of 3D points.

5.2.2 Prioritizing the Candidate Set

The priority assigned to cameras in G should depend on the potential contribution to the task. Cam-
eras of G that are most independent of S are likely to contribute most to point triangulation. Since
p(Ci|S) gives the dependence of Ci on cameras in S, a priority of 1 − p(Ci|S) will consider indepen-
dent cameras early (Step 4). Therefore, using 1 − p(Ci|S) as the priority for each camera Ci ∈ G will
contribute most to point triangulation.

Cameras far from those in S and making larger angles with them are likely to be more useful in
triangulation. We include a distance measure D(Ci, S) and an angle measure α(Ci, S) in the priority.
These are defined as follows:

• D(Ci, S) is a triangle function based on the distance of Ci to the closest camera in S. The function
increases linearly with distance upto a certain threshold and falls steeply beyond it, emphasizing
distant cameras while de-emphasizing very far off ones. We use the mean distances in the SfM
model to set the threshold. Mathematically, we define distance as,

D(Ci, S) = min
Cj∈S

d(Ci, Cj) (5.2)

where d(Ci, Cj) is the euclidean distance between the camera centers of Ci and Cj . Using this
definition and threshold th0, the triangle function is defined as

D(Ci, S) =

D(Ci, S), if D(Ci, S) < th0.

2× th0 −D(Ci, S), if D(Ci, S) ≥ th0.
(5.3)

• α(Ci, S) is a triangle function of the minimum of average angle of points common in Ci with
cameras in S. Mathematically, we define it as,

α(Ci, S) = min
Cj∈S

β(Ci, Cj) (5.4)
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β(Ci, Cj) =

∑
Xi∈FCi

∩FCj
ang(Xi, Ci, Cj)

Number of 3D points seen in both Ci and Cj
(5.5)

where Fx is the set of 3D points observed in camera Ci. ang(Xi, Ci, Cj) is the angle between the
lines of sight from Xi to its projections in Ci and Cj . Figure 4.6 depicts the triangle function for
a given threshold th0.

Using the visibility probability, distance and angle, the overall priority of Ci is given as (Step 4) :

P (Ci, S) = (1− p(Ci|S))D(Ci, S)α(Ci, S) (5.6)

As each matched camera is added to S, the candidate set shrinks (Step 3) and the priorities of camera
in it are updated. Considering independent cameras can quickly shrink the candidate set.

5.2.3 Searching the Candidate Set

The cameras are selected in their priority order to match the query feature F in them. We use a two-
way matching process (Step 5). Two-way matching is used to match a query feature to other features in
the prioritized camera. As each camera is added to S, the candidate set shrinks (Step 3) and the priorities
of cameras change. The guided camera selection continues while there are cameras left in G or when
q1 cameras are in S. Values of q1 between 7 and 10 perform well in practice. Triangulation fails if F
matches in less than 2 cameras. Figure 5.1 shows results of a few steps of the process.

5.3 Local-View Selection Prior

In order to boost the performance of the probability guided camera selection, we multiply the overall
camera priority with a local view selection prior. Local view selection prior is dependent on the fea-
ture point which is being triangulated. To estimate this value, we find 10 already triangulated nearest
neigbhors of the feature point. Each of the nearest neighbor point corresponds to a 3D point which is
visible in some cameras. The set of all 3D points corresponding to the nearest neighobr feature points is
known as L. So, the local view prior of a camera is computed as the number of 3D points belonging to
L that is visible in the respective camera. Mathematically, we formulate the local view selection prior
of a camera as,

lv(Ci) =
∑
Xj∈L

k(Ci, Xj) (5.7)

where k(Ci, Xj) is 1 if Xj is visible in Ci otherwise zero. The prioritized camera is multiplied by
1 + lv(Ci) to obtain a locally relevant priority order. It is given as

P (Ci, S) = (1 + lv(Ci))× ((1− p(Ci|S))D(Ci, S)α(Ci, S)) (5.8)

Local view selection prior is based on the hypothesis that if a camera sees most of the 3D points
corresponding to the nearest neighbors of a feature point, it is highly probable that the new feature point
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will be visible in that camera. The priority of a camera is unchanged if it sees zero number of points
corresponding to the nearest neigbhors of the query feature point.

In the following section we describe our two way matching approach.

5.4 Two-Way Matching

To match F in Ci, we find the 10 nearest neighbors of F in Ci in the SIFT descriptor space. FLANN
library is used to find ten nearest neighbors of query feature SIFT point from the set of features corre-
sponding to Ci [51]. Since we know the camera poses of the two images (C0 and Ci), we estimate the
epipolar line of feature F corresponding to C0 in Ci [29]. The feature-point p among the ten nearest
neighbors, closest to the epipolar line of F in Ci is considered a potential match if its epipolar distance
in Ci is less than 4 pixels.

We then find the SIFT nearest neighbor of the potential match p in camera C0. If its nearest neighbor
is the feature F , we declare Ci as a matching camera and feature p as the matching feature-point.
Figure 5.2 shows an example of two-way matching technique. This method finds matches of even
repetitive feature-points, which are rejected by the traditional ratio test. Finding 3D points among
difficult repetitive structures is the primary advantage of our feature triangulation approach.

5.5 Point Estimation

The 3D coordinates of the query feature F are computed by triangulating its projections in the cam-
eras in S. Given a track of 2D features and the corresponding camera poses, a 3D point is estimated
such that it minimzes the reprojection error. Reprojection error is the difference between actual feature
location and projected feature location, when the 3D point is projected back into the image using camera
parameters. Euclidean distance is used to measure the reprojection error. For multiview triangulation,
we minimize the sum of reprojection errors across all images. We define the sum of reprojection errors
across all images as,

Reprojection Error(Ci, X0) =
∑
Ci∈S

d(Q(Ci, X0), xij)
2 (5.9)

where Q(Ci, X0) is the predicted projection of the reconstructed point X0 on camera Ci and d(x, y) the
Euclidean distance between the inhomogeneous image points represented by x and y. We perform the
summation over all the cameras that belong to the matched set S.

Similar to the problem of localization where given the 2D and 3D correspondences, we estimate
the camera projection matrix, here we estimate the 3D coordinate of a point given its projection coor-
dinates and the corresponding projection matrices. More formally, we have 2D coordinates x and the
projection matrices P available, in the projection equation x ' PX. We triangulate the 3D point X by
decomposing the equation x×PX = 0 using singular value decomposition.
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Figure 5.2: An example of two-way matching technique. Blue square in the left images is the query
feature point. Epipolar lines are shown in blue. Red squares in the right image corresponds to the
nearest neighbors of the query feature point. Green square represents the matching point using two-way
matching.

We use RANSAC over a simple 2-view triangulation for this. RANSAC tries to remove outliers
by assuming that the inilers can be explained using a model where as outliers are independent of each
other and do not follow any model It runs by randomly selecting 2 points to estimate camera parameters
using SVD (as explained above) and estimating the number of inliers that are within the error threshold
of the model. After some iteration, the model which had maximum number of inliers is considered
as the desired model and is re-evaluated using all the inliers. Robust triangulation is a well studied
problem [71]. However, our problem involves highly noisy cameras for which some of these methods
aren’t suitable. We get adequate accuracy using the simple method, though better techniques should be
explored for this step in the future.

5.6 Experimental Results

We carry out an experiment using the Dubrovnik dataset to analyse the performance of our algorithm.
We selected 18K random 3D points for triangulation and comparison with the ground truth. We used
the feature-point of the points track as the query feature. Table 5.1 and 5.2 give triangulation results,
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Track No. pts No. images Triangulation Reprojection Running
Length triangulated tried error error time [s]

2 8743 219.75 0.0548 0.09498 0.44
3 2187 261.34 0.0095 1.8092 0.59
4 1104 243.76 0.0050 2.0842 0.49
5 791 250.70 0.0059 2.2168 0.63

> 5 5441 181.33 0.0030 2.4178 0.33

Table 5.1: Triangulation statistics for different track lengths for 19K Dubrovnik points

separated by their track lengths and reprojection errors. We show the number of points triangulated,
number of images tried, the triangulation error, reprojection error and the running time. Triangulation
error is the Euclidean distance between original point from the SfM dataset and point generated by our
method. Table 5.1 shows that points with longer tracks are triangulated better. Better triangulated points
involve larger variance in viewing angles and show a larger reprojection error (Table 5.2). That is, low
reprojection error is not indicative of better triangulation.

Reprojection No. pts No. images Triangulation Reprojection Running
Error triangulated Tried error error time [s]

< 1 pixels 6037 238.23 0.0409 0.49 0.52
< 2 pixels 12186 223.73 0.0373 0.9927 0.47
< 3 pixels 15850 218.44 0.0288 1.3315 0.45

Table 5.2: Triangulation statistics for different reprojection errors for 19K points

Table 5.3 compares the results of two-way matching and matching using ratio test on 9K points from
Dubrovnik. It also shows adding new points on images from the dataset with repetitive structures shown
in Figure 5.3. Ratio test based matching is done by taking the ratio of nearest neighbor and the nearest
neighbor of the query SIFT feature and using a threshold of 0.6 on the ratio to declare it as a match.
Two way matching is performed as explained earlier. Both of these methods worked well on the SfM
points because these points perhaps passed the ratio test in the original SfM process.

Figure 5.3: Triangulated points shown in red from different view points. Side view is shown with red
borders. The starting image is the inset
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To find 2D-2D correspondences in the case of repetitive structure is a challenging problem. In the
case of repetitive structures the SIFT feature descriptors of similar looking entities are very near in SIFT
space. Normal ratio test based matching fails in these cases because the distance of the query feature
from the nearest neighbor and the next nearest neighbor feature is almost the same because of their
closeness in the SIFT space. Since the state of art SfM reconstruction pipeline is based of ratio test
based matching, these are difficult images for the original SfM process and had fewer points in them.
Our proposed matching technique using the two-way test adds 10 to 50 times the number of points on
images with repetitive structures. The point density at these locations also increase by 33-50%. Image 1
(Fig. 5.4, left) had 1946 points to which 669 new points were added. Image 2 (Fig. 5.4, center) had 1747
triangulated points to which 686 new points are added. Image 3 (Fig. 5.4, right) had 187 triangulated
points to which 120 new points were added.

Dataset
Two Way Matching Using Ratio Test

#Pts #Images Tri. Reproj. time #Pts #Images Tri. Reproj. time
added Tried error error [s] added Tried error error [s]

9126 Pts 8830 267.36 0.0105 1.40 0.728 8950 270.29 0.0097 1.7 0.69
Image 1 669 99 - 1.16 0.38 14 99 - 1.54 0.28
Image 2 686 95 - 1.11 0.70 60 124 - 1.14 0.65
Image 3 120 90 - 1.17 0.75 4 91 - 1.07 0.78

Table 5.3: Effect of Different Matching techniques on Repetitive Structures

Table 5.4 compares the triangulation performance using different prioritization formulation. We
use 30K random points of Dubrovnik dataset for triangulation and comparison with ground truth. The
prioritization measures used in comparison were Dependence Measure (p(X|S)), Independence Mea-
sure ((1 − p(X|S))), Distance weighted Dependence Measure (p(X|S)D(X|S)), Distance weighted
Independence Measure ((1 − p(X|S))D(X|S)), Distance and Angle weighted Dependence measure
and Distance and Angle weighted Independence measure (Section 5). For each on of these, we pro-
vide statistics on the average number of points triangulated, average number of images tried, average
triangulation error, average reprojection error and the average running time.

Table 5.5 gives results of adding new points to an image with repetitive structure. Two-way matching
technique successfully adds new points to difficult images with repetitive structures. Figure 5.4 shows
the accuracy of reconstructed points from different views.

5.7 Conclusions

Feature triangulation identifies a few cameras in which the query feature is visible for triangulation.
It searches the space of cameras for visibility of the query feature. We use the conditional visibility
probability among cameras to effectively guide these searches. Our scheme can match 4 new images
per second on a high end workstation. Our feature triangulation method increases the point density
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Formulation No. pts No. images Triangulation Reprojection Running
triangulated tried (mean) error error time [s]

Dependence Mea-
sure

18844 191.5 0.0576 1.91 0.84

Independence
Measure

16533 439.4 0.0928 1.28 1.04

Distance weighted
Dependence Mea-
sure

22657 244.8 0.0176 1.80 0.74

Distance weighted
Independence
Measure

20996 442.65 0.075 1.36 1.09

Distance and An-
gle weighted De-
pendence Measure

23197 290.40 0.0210 1.71 0.85

Distance and An-
gle weighted Inde-
pendence Measure
(Section 5)

25478 177.66 0.0141 1.93 0.65

Table 5.4: Triangulation statistics using different formulation for 30K Dubrovnik points

Image #Pts already triangulated #Pts added #Images Tried Reproj. error time [s]
Image 1 1961 501 120.2 1.83 0.71
Image 2 343 85 168.4 1.25 0.85
Image 3 3328 347 220.9 1.39 0.89

Table 5.5: Additional Results of using Two-Way matching on images with Repetitive Structures

at typical locations by 30-50%. It is especially good at identifying points in regions with repetitive
appearance, where the 2D-2D match of SfM performs poorly.

56



(a) Image 1

(b) Image 2

(c) Image 3

Figure 5.4: Results of adding new points to an image with repetitive structure. From left: Image with
original triangulated points (white), same image with newly added points (white), triangulated points
shown in red from front view and side view of the same is shown.
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Chapter 6

Bundle Adjustment

Bundle Adjustment (BA) refers to the optimal adjustment of bundles of rays that leave 3D feature
points onto each camera centres with respect to both camera positions and point coordinates. It produces
jointly optimal 3D structure and viewing parameters by minimizing the cost function for a model fitting
error [45, 82]. The re-projection error between the observed and the predicted image points, which is
expressed for m images and n points as,

Error(P,X) =
n∑

i=1

m∑
j=1

d(Q(Pj , Xi), xij)
2 (6.1)

where Q(Pj , Xi) is the predicted projection of point i on image j and d(x, y) the Euclidean distance
between the inhomogeneous image points represented by x and y. Using the reprojection error, the cost
function is defined as,

Cost(P,X) = min
P,X

Error(P,X) (6.2)

Bundle Adjustment is carried out using the Levenberg-Marquardt algorithm [44, 59] because of its
effective damping strategy to converge quickly from a wide range of initial guesses. Given the parameter
vector p, the functional relation f , and measured vector x, it is required to find δp to minimize the
quantity ‖x− f(p+ δp)‖. Assuming the function to be linear in the neighborhood of p, this leads to
the equation

(JTJ+ µI)δp = JTε (6.3)

where J is the Jacobian matrix J = ∂x
∂p . LM Algorithm performs iterative minimization by adjusting

the damping term µ[54], which assure a reduction in the error ε.
BA can be cast as non-linear minimization problem as follows [45, 82]. A parameter vector P ∈ RM

is defined by the m projection matrices and the n 3D points, as

P = (aT1 , . . . ,a
T
m,bT

1 , . . . ,b
T
n )

T , (6.4)

where aj is the jth camera parameters and bi is the ith 3D point coordinates. A measurement vector X
is the measured image coordinates in all cameras:

X = (xT
11, . . . ,x

T
1m,xT

21, . . . ,x
T
2m, . . . ,xT

n1, . . . ,x
T
nm)T . (6.5)
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The estimated measurement vector X̂ using a functional relation X̂ = f(P) is given by

X̂ = (x̂T
11, . . . , x̂

T
1m, x̂T

21, . . . , x̂
T
2m, . . . , x̂T

n1, . . . , x̂
T
nm)T , (6.6)

with x̂ij = Q(aj,bi) [82]. BA minimizes the squared Mahalanobis distance εTΣ−1
x ε, where ε = X−X̂,

over P. Using LM Algorithm, we get the normal equation as

(JTΣ−1
X J+ µI)δ = JTΣ−1

X ε. (6.7)

Apart from the notations above, mnp denotes the number of measurement parameters, cnp the number
of camera parameters and pnp the number of point parameters. The total number of projections onto
cameras is denoted by nnz, which is the length of vector X.

The solution to Equation 6.7 has a cubic time complexity in the number of parameters and is not
practical when the number of cameras and points are high. The Jacobian matrix for BA, however has a
sparse block structure. Sparse BA uses a sparse variant of the LM Algorithm [45]. It takes as input the
parameter vector P, a function Q used to compute the predicted projections x̂ij , the observed projections
xij from ith point on the jth image and damping term µ for LM and returns as an output the solution δ

to the normal equation as given in Equation 6.7. Algorithm 3 outlines the SBA and indicates the steps
that are mapped onto the GPU. All the computations are performed using double precision arithmetic to
gain accuracy.

6.1 Data Structure for the Sparse Bundle Adjustment

Since most of the 3D points are not visible in all cameras, we need a visibility mask to represent the
visibility of points onto cameras. Visibility mask is a boolean mask built such that the (i, j)th location
is true if ith point is visible in the jth image. We propose to divide the reconstruction consisting of
cameras and 3D points into camera tiles or sets of 3D points visible in a camera. Since the number
of cameras is less than number of 3D points and bundle of light rays projecting on a camera can be
processed independent of other cameras, this division can be easily mapped into blocks and threads on
fine grained parallel machines like GPU. The visibility mask is sparse in nature since 3D points are
visible in nearby cameras only and not all. We compress the visibility mask using Compressed Column
Storage (CCS) [16]. Figure 6.1 shows a visibility mask for 4 cameras and 4 points and its Compressed
Column Storage. We do not store the val array as in standard CCS [16] as it is same as the array index
in 3D point indices array. The space required to store this is (nnz +m)× 4 bytes whereas to store the
whole visibility matrix is m × n bytes. Since the projections x̂ij ,xij and the Jacobian Aij ,Bij is non
zero only when the ith 3D point is visible in the jth camera, it is also sparse in nature and thereby stored
in contiguous locations using CCS which is indexed through the visibility mask.
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1: Compute the Predicted Projections x̂ij using P and Q. # Computed on GPU
2: Compute the error vectors εij ← xij − x̂ij # Computed on GPU
3: Assign J← ∂X

∂P ( Jacobian Matrix ) where

Aij ← ∂x̂ij

∂aj
=

∂Q(aj ,bi)
∂aj

(
∂x̂ij

∂ak
= 0 ∀i 6= k) and

Bij ← ∂x̂ij

∂bi
=

∂Q(aj ,bi)
∂bi

(
∂x̂ij

∂bk
= 0 ∀j 6= k) # Computed on GPU

4: Assign JTΣ−1
X J←

(
U W
WT V

)
where U,V,W is given as

Uj ←
∑

iA
T
ijΣ

−1
xij

Aij , Vi ←
∑

j B
T
ijΣ

−1
xij

Bij and
Wij ← AT

ijΣ
−1
xij

Bij # Computed on GPU

5: Compute JTΣ−1
X ε as εaj ←

∑
iA

T
ijΣ

−1
xij

εij ,
εbi ←

∑
j B

T
ijΣ

−1
xij

εij # Computed on CPU

6: Augment Uj and Vi by adding µ to diagonals to yield
U∗

j and V∗
i # Computed on GPU

7: Normal Equation:
(

U∗ W
WT V∗

)(
δa
δb

)
=
(
εa
εb

)
# Using Equation (6.7)

8:

U∗ −WV∗−1WT︸ ︷︷ ︸
S

0

WT V∗

(δa
δb

)
=
(εa −WV∗−1εb︸ ︷︷ ︸

e
εb

)
# Using Schur Complement

9: Compute Yij ←WijV
∗−1
i # Computed on GPU

10: Compute Sjk ← U∗
j −

∑
iYijW

T
ik # Computed on GPU

11: Compute ej ← εaj −
∑

iYijεbi # Computed on CPU
12: Compute δa as (δTa1 , . . . , δ

T
am)

T = S−1(eT1 , . . . , e
T
m)T # Computed on GPU

13: Compute δbi ← V∗−1
i (εbi −

∑
j W

T
ijδaj ) # Computed on GPU

14: Form δ as (δTa , δ
T
b )

T

Algorithm 3: SBA (P,Q, x, µ)

6.2 Computation of the Initial Projection and Error Vector

Given P and Q as input, the initial projection is calculated as X̂ = Q(P) (Algorithm 3,line 1) where
X̂ is the estimated measurement vector and x̂ij = Q(aj,bi) is the projection of point bi on the camera
aj using the function Q. The error vector is calculated as εij = xij − x̂ij where xij and x̂ij are the
measured and estimated projections. The estimated projections and error vectors consumes memory
space of nnz ×mnp each. Our implementation consists of m thread blocks running in parallel, with
each thread of block j computing a projection to the camera j. The number of threads per block is
limited by the total number of registers available per block and a maximum limit of number of threads
per block. Since the typical number of points seen by a camera is of the order of thousands (more than
the limit on threads) we loop over all the 3D points visible by a camera in order to compute projections.
The GPU kernel to calculate the initial projection and error vector is shown in Algorithm 4.
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Figure 6.1: An example of the compressed column storage of visibility mask having 4 cameras and 4
3D Points. Each CUDA Block processes one set of 3D points.

1: CameraID← BlockID
2: Load the camera parameters into shared memory
3: repeat
4: Load the 3D point parameters (given ThreadID and CameraID)
5: Calculate the Projection x̂ij given 3D Point i and Camera j
6: Calculate the Error Vector using εij = xij − x̂ij

7: Store the Projections and Error Vector back into global memory
8: until all the projections are calculated

Algorithm 4: CUDA INITPROJ KERNEL (P,Q,X)

6.3 Computation of the Jacobian Matrix (J)

The Jacobian matrix is calculated as J = ∂X
∂P (Algorithm 3, line 3). For X̂ = (x̂T

11, . . . , x̂
T
n1,

x̂T
12, . . . , x̂

T
n2, . . . , x̂

T
1m, . . . , x̂T

nm)T , the Jacobian would be (∂x̂11
∂P

T
, . . . , ∂x̂n1

∂P

T
, ∂x̂12

∂P

T
, . . . ,

∂x̂n2
∂P

T
, . . . , ∂x̂1m

∂P

T
, . . . , ∂x̂nm

∂P

T
). Since ∂x̂ij

∂ak
= 0 ∀i 6= k and ∂x̂ij

∂bk
= 0 ∀j 6= k, the matrix is sparse in

nature.

For the example, shown in Figure 6.1, the Jacobian matrix would be

J =



A10 0 0 0 0 B10 0 0

A20 0 0 0 0 0 B20 0

0 A01 0 0 B01 0 0 0

0 A31 0 0 0 0 0 B31

0 0 A12 0 0 B12 0 0

0 0 A32 0 0 0 0 B32

0 0 0 A03 B03 0 0 0

0 0 0 A13 0 B13 0 0


, (6.8)
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where, Aij =
∂x̂ij

∂aj
=

∂Q(aj ,bi)
∂aj

and Bij =
∂x̂ij

∂bi
=

∂Q(aj ,bi)
∂bi

. The matrix when stored in compressed
format would be
J = (A10, B10, A20, B20, A01, B01, A31, B31, A12, B12, A32, B32, A03, B03, A13, B13). The memory
required is (cnp+pnp)×mnp×nnz×4 bytes. The CUDA grid structure used in Jacobian computation
is similar to initial projection computation. Block j processes the Aij and Bij , corresponding to the jth

camera. The kernel to calculate the Jacobian Matrix is shown in Algorithm 5.

1: CameraID← BlockID
2: repeat
3: Load the 3D point parameters and Camera parameters (given ThreadID and CameraID) into

thread memory.
4: Calculate Bij followed by Aij using scalable finite differentiation
5: Store the Aij and Bij into global memory at contiguous locations.
6: until all the projections are calculated

Algorithm 5: CUDA JACOBIAN KERNEL (P,Q)

6.4 Computation of JTΣ−1X J

JTΣ−1
X J is given as

(
U W
WT V

)
where Uj =

∑
iA

T
ijΣ

−1
xij

Aij , Vi =
∑

j B
T
ijΣ

−1
xij

Bij and

Wij = AT
ijΣ

−1
xij

Bij . For the example in Figure 6.1, JTΣ−1
X J is given as:

JTΣ−1
X J =



U0 0 0 0 0 W10 W20 0

0 U1 0 0 W01 0 0 W31

0 0 U2 0 0 W12 0 W32

0 0 0 U3 W03 W13 0 0

0 W T
01 0 W T

03 V0 0 0 0

W T
10 0 W T

12 W T
13 0 V1 0 0

W T
20 0 0 0 0 0 V2 0

0 W T
31 W T

32 0 0 0 0 V3


(6.9)

6.4.1 Computation of U:

The CUDA grid structure consists m blocks, such that each block processes Uj where j is the
BlockID. Thread i in block j processes AT

ijΣ
−1
xij

Aij , which is stored in the appropriate segment. The
summation is faster when using a segmented scan[70] on Tesla S1070 whereas a shared memory reduc-
tion is faster on the Fermi GPU. The memory space required to store U is cnp × cnp ×m × 4 bytes.
The computation of U is done as described in Algorithm 6.
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1: CameraID← BlockID
2: repeat
3: Load Aij where j = CameraID ( for a given thread )
4: Calculate Aij ×AT

ij and store into appropriate global memory segment
5: until all the Aij are calculated for the jth camera
6: Perform a shared memory reduction to get final sum on Fermi. Write to global memory and

perform a segmented scan on Tesla S1070.

Algorithm 6: CUDA U KERNEL (A)

6.4.2 Computation of V:

The CUDA grid structure and computation of V is similar to the computation of U. The basic dif-
ference between the two is that BT

ijΣ
−1
xij

Bij is stored in the segment for point i for reduction using
segmented scan on Tesla S1070 where as a shared memory reduction is done on Fermi. The memory
space required to store V is pnp× pnp× n× 4 bytes.

6.4.3 Computation of W:

The computation of each Wij is independent of all other Wij as there is no summation involved as
in U and V. Therefore the computation load is equally divided among all blocks in GPU.

⌈
nnz
10

⌉
thread

blocks are launched with each block processing 10 W matrices. This block configuration gave us the
maximum CUDA occupancy. The memory space required to store W is pnp × cnp × nnz × 4 bytes.
The computation of W is done as described in Algorithm 7.

1: Load Aij and Bij for each warp of threads.
2: Calculate Aij ×BT

ij

3: Store Wij back into global memory at appropriate location.

Algorithm 7: CUDA W KERNEL (A,B)

6.5 Computation of S = U∗ −WV∗−1WT

The computation of S is the most demanding step of all the modules (Algorithm 3, line 10). Ta-
ble 6.1 shows the split up of computation time among all components. After calculating U,V and W,
augmentation of U,V is done by calling a simple kernel, with m,n blocks with each block adding µ to
the respective diagonal elements. Since V ∗ is a block diagonal matrix, it’s inverse can be easily calcu-
lated through a kernel with n blocks, with each block calculating the inverse of V ∗ submatrix ( of size
pnp× pnp).
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6.5.1 Computation of Y = WV∗−1:

The computation of each Yij is independent of all other Yij as there is no summation involved as in U
and V. Therefore the computation load is equally divided among all blocks in GPU.

⌈
nnz
10

⌉
thread blocks

are launched with each block processing 10 Y matrices and each warp of thread computing Wij×V ∗−1
i .

This block configuration gave us the maximum CUDA occupancy. The memory space required to store
Y is pnp× cnp× nnz × 4 bytes. The computation of Y is done as described in Algorithm 8.

1: Load Wij and V ∗−1
i for each warp of threads.

2: Calculate Wij × V ∗−1
i

3: Store Yij back into global memory at appropriate location.

Algorithm 8: CUDA Y KERNEL (W,V∗−1)

6.5.2 Computation of U∗ −YWT:

S is a symmetric matrix, so we calculate only the upper diagonal. The memory space required to store
S is m×m× 81× 4 bytes. The CUDA grid structure consists of m×m blocks. Each block is assigned
to a 9 × 9 submatrix in the upper diagonal, where each block calculates one Sij = Uij −

∑
k YkiW

T
kj .

Limited by the amount of shared memory available and number of registers available per block, only
320 threads are launched. The algorithm used for computation is given in Algorithm 9.

1: repeat
2: for Sij

3: Load 320 3D Point indices ( given camera set i ) into shared memory
4: Search for loaded indices in camera set j and load them into shared memory.
5: for all 320 points loaded in shared memory do
6: Load 10 indices of the camera set i and j from the shared memory.
7: For each warp, compute YkiW

T
kj and add to the partial sum for each warp in shared memory

8: end for
9: Synchronize Threads

10: until all the common 3D points are loaded.
11: Sum up the partial summations in the shared memory to get the final sum.
12: if i == j then
13: Compute YiiW

T
ii ← U∗

ii − YiiW
T
ii

14: end if
15: Store YijW

T
ij into global memory.

Algorithm 9: CUDA S KERNEL (U∗,Y,WT)
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6.6 Computation of the Inverse of S

As the S Matrix is symmetric and positive definite, Cholesky decomposition is used to perform
the inverse operation (Algorithm 3, line 12). Cholesky decomposition is done using the MAGMA
library [47], which is highly optimized using the fine and coarse grained parallelism on GPUs as well
benefits from hybrids computations by using both CPUs and GPUs. It achieves a peak performance of
282 GFlops for double precision. Since GPU’s single precision performance is much higher than it’s
double precision performance, it used the mixed precision iterative refinement technique, in order to
find inverse, which results in a speedup of more than 10 over the CPU.

6.7 Scheduling of Steps on CPU and GPU

Figure 6.2 shows the way CPU and GPU work together, in order to maximize the overall through-
put. While the computationally intense left hand side of the equations are calculated on GPU, the
relatively lighter right hand side are computed on CPU. The blocks connected by the same vertical line
are calculated in parallel on CPU and GPU. The computations on the CPU and the GPU overlap. The
communications are also performed asynchronously, to ensure that the GPU doesn’t lie idle from the
start to the finish of an iteration.

Figure 6.2: Scheduling of steps on CPU and GPU. Arrows indicate data dependency between modules.
Modules connected through a vertical line are computed in parallel on CPU and GPU.

6.8 Experimental Results

In this section, we analyze the performance of our approach and compare with the CPU implementa-
tion of Bundle Adjustment [45]. We use an Intel Core i7, 2.66GHz CPU. For the GPU, we use a quarter
of an Nvidia Tesla S1070 [43] with CUDA 2.2 and an Nvidia Tesla C2050 (Fermi) with CUDA 3.2.
All computations were performed in double precision, as single precision computations had correctness
issues for this problem.
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We used the Notre Dame 715 dataset [76] for our experiments. We ran the 3D reconstruction process
on the data set and the input and output parameters (P,Q, x, µ, δ) were extracted and stored for bundle
adjustment. We focussed on getting good performance for a dataset of around 500 images as explained
before. The redundancy is being exploited for larger data sets using a minimal skeletal subset of similar
size by other researchers [4, 78]. We used a 488 image subset to analyze the performance and to compare
it with the popular implementation of bundle adjustment [45].

Time Taken (in seconds)
Computation GPU1 GPU2 GPU1 GPU2 GPU1 GPU2 GPU1 GPU2 GPU1 GPU2

Step 38 104 210 356 488
Cameras Cameras Cameras Cameras Cameras

Initial Proj 0.02 0.01 0.02 0.03 0.05 0.04 0.06 0.04 0.06 0.05
Jacobian 0.1 0.04 0.2 0.07 0.32 0.12 0.39 0.16 0.45 0.17
U, V, W Mats 0.14 0.04 0.23 0.09 0.39 0.15 0.5 0.18 0.56 0.2
S Matrix 0.25 0.09 0.97 0.27 2.5 0.56 4.63 1.01 6.55 1.3
S Inverse 0.01 0 0.09 0.02 0.28 0.08 0.87 0.19 1.74 0.39
L2 Err (CPU) 0 0.01 0.01 0.01 0.02
εa, εb (CPU) 0.05 0.12 0.17 0.21 0.24
e (CPU) 0.03 0.05 0.08 0.1 0.11
Total Time 0.52 0.19 1.51 0.51 3.54 0.97 6.44 1.61 9.36 2.15

Table 6.1: Time in seconds for each step in one iteration of Bundle Adjustment for different number of
cameras on the Notre Dame data set. Total time is the time taken by hybrid implementation of BA using
CPU and GPU in parallel. GPU1 is a quarter of Tesla S1070 and GPU2 is Tesla C2050.

Table 6.1 shows the time taken for a single iteration for each major step. The S computation takes
most of the time, followed by the S inverse computation. The Schur complement takes about 70% of
the computation time for S, as it involves O(m2 × mnp × pnp × cnp × mnvis) operations, where
mnvis is the maximum number of 3D points visible by a single camera. On the GPU, each of the
m2 blocks performs O(mnp × pnp × cnp ×mnvis) computations. 60% of S computation is to find
the partial sums, 30% for the reduction, and 10% for the search operation. It is also limited by the
amount of shared memory. The Jacobian computation is highly data parallel and maps nicely to the
GPU architecture. Rest of the kernels (U, V, W and initial projection) are light.

As shown in Figure 6.3, the total running time on the GPU is t = t1 + t2 + t3 + t4 +C4 + t5 and on
CPU is T = T1 + C1 + T2 + C2 + T3 + C3 where ti is the time taken by GPU modules, Ti time taken
by CPU modules and Ci communication time. The total time taken is max(t, T ). CPU-GPU parallel
operations take place only when max(t, T ) < (t + T ). For the case of 488 cameras, the time taken
by GPU completely overlaps the CPU computations and communication, so that there is no idle time
for the GPU. Figure 6.4 compares the time taken by our hybrid algorithm for each iteration of Bundle
Adjustment with the CPU only implementation on the Notre Dame dataset. The hybrid version with
Tesla C2050 gets a speedup of 30-40 times over the CPU implementation.
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Figure 6.3: Starting and ending times for each step including memory transfer for one iteration using
488 cameras. Times in paranthesis are for the use of the S1070 and others for the C2050.

6.8.1 Memory Requirements

The total memory used can be a limiting factor in the scalability of bundle adjustment for large scale
3D reconstruction. As we can see in Figure 6.5, the total memory requirement is high due to temporary
requirements in the segmented scan [70] operation on the earlier GPU. The extra memory required is
of the size 3 × nnz × 81 × 4 bytes which is used to store the data, flag and the final output arrays
for the segmented scan operation. The permanent memory used to store the permanent arrays such as
J, U, V, W, and S is only a moderate fraction of the total memory required. The Fermi has a larger
shared memory and the reduction is performed in the shared memory itself. Thus, the total memory
requirement is the same as the permanent memory requirement when using Tesla C2050.

6.9 Conclusions

In this chapter, we introduced a hybrid algorithm using the GPU and the CPU to perform practical
time bundle adjustment. The time taken for each iteration for 488 cameras on using our approach is
around 2 seconds on Tesla C2050 and 9 seconds on Tesla S1070, compared to 81 seconds on the CPU.
This can reduce the computation time of a week on CPU to less than 10 hours. This can make processing
larger datasets practical. Most of the computations in our case is limited by the amount of available
shared memory, registers and the limit on number of threads. The double precision performance is
critical to the GPU computation; the better performance using Fermi GPUs may also be due to this.

Faster bundle adjustment will enable processing of much larger data sets in the future. One option is
to explore better utilization of the CPU. Even the single-core CPU is not used fully in our implementa-
tion currently. The 4-core and 8-core CPUs that are freely available can do more work, and will need
a relook at the distribution of the tasks between the CPU and the GPU. The use of multiple GPUs to
increase the available parallelism is another option. Expensive steps like the computation of S matrix
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Figure 6.4: Time and speedup for one iteration of Bundle Adjustment on the CPU using Tesla S1070
and Tesla S2050.

can be split among multiple GPUs without adding enormous communication overheas. This will further
change the balance between what can be done on the CPU and on the GPU.
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Chapter 7

Conclusions

In the first part of this thesis, we presented the visibility probability structure of an SfM dataset and its
applications in the dual problems of image localization and feature triangulation. The probability-guided
search produced fast and efficient point and camera matches for this problem for both registration and
rejection. we were able to increase point density at a location by 30-50% using the feature triangulation
step, especially in places with repetitive structures.

The high storage requirements for the joint visibility information is a drawback of this work. The
formulation depends on the probability structure to guide the matching process. This can have difficulty
in sparse regions of space, where the empirical probabilities are unreliable.

In this second part of this thesis, we introduced a hybrid algorithm using the GPU and the CPU
to perform practical time bundle adjustment. The time taken for each iteration for 488 cameras on
using our approach is around 2 seconds on Tesla C2050 and 9 seconds on Tesla S1070, compared to 81
seconds on the CPU. This can reduce the computation time of a week on CPU to less than 10 hours. This
can make processing larger datasets practical. Most of the computations in our case is limited by the
amount of available shared memory, registers and the limit on number of threads. The double precision
performance is critical to the GPU computation; the better performance using Fermi GPUs may also be
due to this.

As a possible future direction, we are working on an alternate SfM pipeline using efficient localiza-
tion, triangulation and fast bundle adjustment. Given the visibility information available in the recon-
structed SfM output, we can quickly localize our image using our proposed image localization algo-
rithm. New points from the localized can be triangulated using the visibility probability guided feature
triangulation technique. This can be followed by a local or some times global bundle adjustment. The
alternate pipeline can help in easily updating the reconstructed output and it will not require all the
images to be present before running the SfM algorithm.

Another direction which we are exploring is the application of efficient localization to provide an
immersive visualization of the personal photo collection. Personal photographs along with the photos
available in the community photo collection can provide an immersive experience. Personal images can
be localized using our proposed localization algorithm Different user statistics along with the temporal
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data available in the personal photographs can be used to approximately estimate the path taken by the
person. It can be used to provide a virtual tour of the places visited using the personal photographs.
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